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On Landau’s Eigenvalue Theorem for
Line-of-Sight MIMO Channels
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Abstract—An alternative derivation is provided for the
degrees of freedom (DOF) formula on line-of-sight (LOS)
channels via Landau’s eigenvalue theorem for bandlimited
signals. Compared to other approaches, Landau’s theorem
provides a general framework to compute the DOF in
arbitrary environments, this framework is herein specialized
to LOS propagation. The development shows how the
spatially bandlimited nature of the channel relates to its
geometry under the paraxial approximation that applies to
most LOS settings of interest.

Index Terms— Degrees of freedom, line-of-sight MIMO,
paraxial approximation, Landau’s eigenvalue theorem.

I. INTRODUCTION

The number of distinct waveforms able to transport
information via electromagnetic waves is an inherent
property of a physical channel. It is upper bounded by
the number of degrees of freedom (DOF), a quantity
of interest in information theory [1]–[3], optics [4]–[8],
electromagnetism [9]–[11], and signal processing [12],
[13]. Given the continuous nature of channels, waveforms
span an infinite-dimensional space, yet the noise allows
for a certain error in the representation [10]. Channels are
thus amenable to a discrete representation over a space of
approximately DOF dimensions [14].

There are various ways to compute the number
of DOF in a wireless channel, say by leveraging
diffraction theory [4]–[6], by studying the eigenvalues
of the Green’s operator [3], [7]–[9], or by pursuing a
signal-space approach [1], [13]. This paper provides an
alternative derivation via Landau’s eigenvalue theorem
for multidimensional bandlimited signals (or fields)
[15]. Analogously to time-domain waveforms of finite
bandwidth, an electromagnetic channel may be regarded
as spatially bandlimited due to a low-pass filtering
behavior of the propagation [1], [9], [13]. In this
analogy, time is replaced by space and frequency by
spatial-frequency (or wavenumber) [14].

Originally devised for waveform channels [16],
Landau’s theorem has been generalized to electromagnetic
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Fig. 1. LOS communications between continuous arrays.

propagation [15], and lately applied to non-line-of-sight
(NLOS) channels [13]. Prompted by the interest in LOS
multiple-input multiple-output (MIMO) communication
at high frequencies [17], here the connection is drawn
with such channels under the paraxial approximation
that holds when the propagation is focused about the
axis connecting the two arrays [18]. The development
builds on signal theory concepts, without relying on
unconventional mathematics. A bridge between LOS and
NLOS propagation is also uncovered, with implications
for MIMO communication and Nyquist reconstruction at
high frequencies.

Notation: Fn is the n-dimensional Fourier operator,
(Fnh)(f) =

∫
Rn h(t)e

−j2πfTt dt = g(f), whereas F−1n
is its inverse, (F−1n g)(t) = h(t), with the shorthand
notation F1 = F and F−11 = F−1. In turn, (1Rh)(t) =
1R(t)h(t) with 1R(t) the indicator function of a set
R ⊂ Rn while RA is the set obtained by applying any
invertible linear transform A to the axes of R, and m(·)
is the Lebesgue measure.

II. PLANE-WAVE REPRESENTATION
OF LOS CHANNELS

Consider two n-dimensional continuous-space arrays
(n = 1 or 2) communicating with scalar electromagnetic
waves at wavelength λ in a 3D free-space environment.
We denote by D the distance between the array centroids.
Capitalizing on that an arbitrary source can always be
replicated by a flat source on a given plane thanks to
Huygen’s principle [19], we let S ⊂ Rn and R ⊂ Rn be
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the projections—respecting the respective centroids—of
the source and receive arrays onto parallel planes (n = 2)
or parallel lines (n = 1). The normal to these planes or
lines aligns with the z-axis, as shown in Fig. 1 for n = 2.
The scalar electromagnetic field e(r), r ∈ R, is the image
of a current density j(s), s ∈ S, through a linear channel
operator G as

e(r) = (Gj)(r) =
∫
S

h(r, s)j(s) ds (1)

where h(r, s) is the space-variant kernel induced by the
operator, as dictated by the physical environment. In LOS,
it is found by solving [19]

∇2e(r) +

(
2π

λ

)2

e(r) = j
2πη

λ
j(r) (2)

with η the impedance. The kernel solving (2) is known to
be given by h(r, s) = −j 2πηλ G(r, s) with [19, Sec. 1.3.4]

G(r, s) =
ej2π

r
λ

4πr
(3)

the scalar Green’s function, where r = ‖(r − s,−D)‖
reveals the space-invariant nature of LOS channels [20].
The foregoing kernel can also be represented as the
plane-wave decomposition [20, Eq. 12]

h(r, s) =
η

2λ

∫
Rn

e−j2πκzD

κz
ej2πk

T(r−s) dk (4)

with

κz =

{√
1/λ2 − ‖k‖2 ‖k‖ ≤ 1/λ

j
√
‖k‖2 − 1/λ2 ‖k‖ > 1/λ

(5)

such that ‖k‖2 + κ2z = 1/λ2 for every wave vector1

k. Properly normalized, the real parts of (k, κz) are the
cosines of the angles subtended by each plane wave with
the axes, while λ‖k‖ = sin θ and λκz = cos θ given
θ ∈ [0, π/2] as the plane-wave’s angle with the z-axis.

III. PARAXIAL APPROXIMATION IN THE
WAVENUMBER DOMAIN

The paraxial approximation applies when, away from
the source, propagation is focused about the axis
connecting with the receiver (the z-axis in our case) [18].
It entails D � L with L the maximum array dimension,
such that the phase and magnitude of (3) satisfy [7], [17]

r ≈

D +
‖r − s‖2

2D
(phase)

D (magnitude)
(6)

where the phase’s behavior follows from
√
1 + x ≈ 1 + x

2
for small x = ‖r − s‖2/D2.

1For notational convenience, the wavenumber domain in [14, Ch. 8]
is rescaled by 1/2π, corresponding to the spatial frequency domain.

The paraxial approximation has its translation to the
wavenumber domain. From | sin θ| � 1, it follows that
‖k‖ � 1/λ; then, (5) satisfies [18]

κz ≈

1/λ− λ‖k‖2

2
(phase)

1/λ (magnitude).
(7)

It is shown in Appendix A that, under the paraxial
approximation, (1) reduces to

e(r) = (Ĝj)(r) =
∫
S

ej2πs
T r
λD j(s) ds (8)

for r ∈ R. The uniform scaling transform A = 1
λDIn of

the receiver’s axes would yield, equivalently,

e(r) = (Hj)(r) =
∫
S

j(s) ejs
Tr ds (9)

for r ∈ RA. Hence, paraxial LOS channels amount to
an n-dimensional inverse Fourier transform of the source
density returning the received field [18]. The limitation
of the source support that a transmit array imposes
corresponds to a low-pass filtering operation, revealing
the spatially bandlimited nature of electromagnetic fields
[1], [9], [13]. With respect to the classical definition of
a bandlimited signal in the frequency domain, here, the
notion applies in the wavenumber domain [14, Ch. 8].

IV. KOLMOGOROV SPACE DIMENSIONALITY

Due to conservation of energy, e(r) belongs to the
Hilbert space V of square-integrable functions. This space
is equipped with the norm ‖e‖ = (

∫
Rn |e(r)|

2 dr)1/2

with e(r) characterized by an infinite number of basis
functions. The DOF provide a measure of the effective
dimensionality of V , i.e., the minimum number N of
basis functions needed to represent every element of V
up to some accuracy. The degree of approximation of V
by an N -dimensional subspace VN is measured by the
Kolmogorov N -width [14, Ch. 3.2]

dN (V ) = inf
dim(VN )=N

DVN (V ) (10)

with DVN (V ) = supe∈V infeN∈VN ‖e−eN‖ the deviation
between V and VN according to a min-max criterion. The
N -width in (10) is the smallest such deviation over all
subspaces of dimension N . The DOF in V at any level
of accuracy 0 < σ < 1 is then

DOFσ = min{N : dN (V ) ≤ σ} (11)

whose existence is ensured by the spectral theorem for
self-adjoint operators. Precisely, for any Hilbert-Schmidt
operator H, we have that [14, Eq. 3.56]

DOFσ = min{N : λN ≤ σ} (12)

where λN is the N th smallest eigenvalue of HH∗
(composition of H with its adjoint H∗). The discrete
counterpart is the spectral theorem for Hermitian matrices,
with λN the N th smallest eigenvalue of HH∗.
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V. DOF
A. Bandlimited Waveforms

As the observation interval T increases, a waveform
concentrates within a bandwidth B (in Hz), with
the maximum simultaneous concentration in time and
frequency dictated by the uncertainty principle [14, Ch. 2].
This behavior is specified by [16]

TTBBTTφi(t) = λiφi(t) (13)

where TT = 1|t|≤T/2 and BB = F−11|f |≤BF
correspond to time-limiting to T/2 and frequency-limiting
to B [14, Ch. 3.4.1]. Rewriting (13) as HH∗ with

H = TTF−11|f |≤B H∗ = 1|f |≤BFTT , (14)

the spectral theorem yields an eigensolution. Specifically,
for any σ, (12) is obtained by spectral concentration after
letting T grow while keeping B fixed, giving [16, Eq. 2]

DOFσ=DOF+
1

π2
log

(
1− σ
σ

)
log T + o(log T ) (15)

where
DOF = 2BT. (16)

By symmetry, (15) can also be obtained from an operator
BBTTBB , scaling the frequency axis by B and letting B
grow while keeping T fixed.

B. Spatially Bandlimited Fields

Generalization to multidimensional signals (or fields) is
achieved by replacing time with space, and frequency with
wavenumber. The concentration of a spatially bandlimited
field of wavenumber support k ∈ K ⊂ Rn observed on a
region RA ⊂ Rn is ruled by [15, Eq. 10] [14, Ch. 3.5]

TRA
BKTRA

φi(r) = λiφi(r) (17)

where TRA
= 1RA

and BK = F−1n 1KFn correspond
to space-limiting to RA and wavenumber-limiting to K.
Rewriting (17) as HH∗ with

H = TRA
F−1n 1K H∗ = 1KFnTRA

, (18)

an eigensolution of (17) is obtained as [15],

DOFσ = DOF+
1

π2
log

(
1− σ
σ

)
log det(A) (19)

+ o(log det(A))

where
DOF = m(K)m(RA). (20)

Spectral concentration arises as RA varies over AR with
fixed R and growing det(A), while K is fixed [14,
Ch. 3.5.4]. By symmetry, (19) is also obtainable from
an operator BKTRA

BK after scaling the wavenumber
domain by a growing det(A) while R and K are fixed.

From (20), we can recover (16) by setting R = {|t| ≤
1/2} and K = {|f | ≤ B} while turning A into T .
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Fig. 2. Normalized sorted eigenvalues of HH∗ ∈ CN×N
at various frequencies for ULAs with L = 0.2 m and D =
10L. Smooth curves are obtained by having N � DOF.

C. Paraxial LOS Channels

Owing to the Fourier relationship between source
current and receive field in (9), restricting the source to
S is tantamount to limiting the wavenumber to K = S
at the receiver. In turn, the receiver region is RA with
A = 1

λDIn. The DOF are then an instance of (20),
precisely

DOF = m(S)m(RA) =
m(S)m(R)

(λD)n
(21)

given m(RA) = det(A)m(R). Spectral concentration is
achieved with R and S fixed while λD shrinks, whereby
the receive array becomes magnified from the vantage of
the source and the spatial resolution sharpens. Although
such concentration could potentially be squeezed by the
paraxial approximation, which requires D to be large,
it is shown in Sec. VI-B that such squeeze is rather
inconsequential.

Symmetry may be leveraged to alternatively obtain (21)
via BKTRA

BK . This amounts to swapping source and
receiver, with the same result due to reciprocity [20].

Let H ∈ CN×N be the MIMO channel matrix obtained
by sampling two 1D continuous arrays of size L = 0.2 m.
The eigenvalues of HH∗ are plotted in Fig. 2, sorted
and normalized by DOF = L2/(λD). The frequency
is {60, 100, 300} GHz and D = 10L, complying with
the paraxial approximation. Expectedly, the eigenvalues
polarize into two levels as the carrier frequency increases
due to spectral concentration.

VI. LOS AND NLOS PROPAGATION

A. DOF

NLOS channels are specified by h(r, s), space-variant
because of multipath propagation introducing a separate
dependence on the source and receiver locations [20].
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For 1D arrays of dimensions Ls and Lr, under isotropic
scattering [1, Eq. 27]

DOF = min

(
Ls

λ/2
,
Lr

λ/2

)
. (22)

In complete generality, with n-dimensional arrays and
wavenumber supports Ks ⊂ Rn and Kr ⊂ Rn,

DOF = min
(
m(Kr)m(CAr

), m(Ks)m(CAs
)
)

(23)

where the source and receiver have been expressed as
linear transformations of a unit-measure set C ⊂ Rn
with transform matrices As and Ar, i.e., S = CAs

and R = CAr
. Spectral concentration occurs when

min(det(As),det(Ar)) grows while Ks and Kr are fixed.
To see how (23) specializes to (22), it suffices to let

C = {|x| ≤ 1/2} and Ks = Kr = {|κx| ≤ 1/λ} while
As and Ar become the scalars Ls and Lr.

From (23), we can also geometrically recover the
result for paraxial LOS channels in (21). The solid angle
subtended by the source at the receiver is m(S)/Dn.
From the paraxial approximation, sin(θ) ≈ θ while
λ‖k‖ = sin θ, hence m(Kr) = m(S)/(λD)n. Due to
reciprocity, m(Ks) = m(R)/(λD)n from the vantage of
the source. Plugging these results into (23) yields (21).

There are two terms in (23), modeling the separate
scattering at both ends of the link and the ensuing space
variance of NLOS channels [20]. In contrast, there is
only a term in (21), as LOS propagation puts source and
receiver in one-to-one correspondence, leading to space
invariance.

Also noteworthy is that, while in LOS channels S and
R are the projections of the source and receive arrays,
in NLOS channels, these are the actual array apertures
as the array orientations are embedded into the angular
selectivity of the local scattering.

B. Asymptotic Regimes
Another difference between (21) and (23) is in their

regimes of relevance, where eigenvalues polarize into two
levels (see Fig. 2) and asymptotic results can be leveraged
[17]. To bring out the key concept, consider rectangular
arrays of dimensions Ls,i and Lr,i, i = 1, . . . , n, which
arise from the transformation of a unitary square C by

As = diag({Ls,i}ni=1) (24)
Ar = diag({Lr,i}ni=1). (25)

The spectra of NLOS channels concentrate for

min

(
n∏
i=1

Ls,i

λ
,

n∏
i=1

Lr,i

λ

)
� 1, (26)

implying electrically large arrays. Alternatively, paraxial
LOS channels require

n

√√√√ n∏
i=1

Ls,i

λ

n∏
i=1

Lr,i

λ
� D

λ
� max

i=1,n

(
Ls,i

λ
,
Lr,i

λ

)
(27)

where the first inequality ensures spectral concentration
in (21) and the second one embodies the paraxial
approximation. (As a by-product of the first inequality,
D is also incompatible with planar wavefronts.)

Welcomely, (27) delimits a broad range of validity for
the developed theory. With squared arrays of size L,
setting D = 10L as a reasonable concretization of the
second inequality, the first one yields D/λ � 100; at
100 GHz, this amounts to D � 0.3 m. Rescaling one axis
by β ≥ 1 and the other one by 1/β, to keep the array
apertures fixed while altering their aspect ratio, setting
D = 10βL yields D/λ � 100β2; at 100 GHz with
β = 4, this gives D � 4.8 m.

C. Nyquist Sampling

The DOF per spatial unit correspond to the sampling
density µ (in samples/mn) needed for reconstruction [13],
extending the classical notion of Nyquist rate (samples/s)
to n-dimensional fields.

Recalling (23) for NLOS channels, at the receiver

µr =
DOF

m(R)
= m(Kr). (28)

This is highest under isotropic scattering, when Kr is
an n-dimensional disk of unit radius [13], [20] leading
to λ/2-sampling and to hexagonal sampling with density
π/λ2, respectively when n = 1 and n = 2 [13]. Scattering
selectivity shrinks m(Kr), rendering the sampling sparser.

In turn, recalling (21) for LOS channels, at the receiver

µr =
DOF

m(R)
=

m(S)

(λD)n
(29)

which depends on sheer geometry (source dimension,
wavelength, and range), rather than on the scattering
selectivity. An inspection of (29) also reveals that LOS
channels can be reconstructed more efficiently due to
a lower DOF density. For instance, λ/2-sampling with
n = 1 implies D = Ls/2, which is unfeasible under the
paraxial approximation.

D. Rayleigh Spacing for LOS Channels

Consider 1D arrays and let Ns and Nr be the transmit
and receive antenna numbers, with uniform spacings δs =
1/µs and δr = 1/µr (in m/sample); these are reciprocals
of the Nyquist densities. For LOS channels, from (29)
and Ls = (Ns − 1)δs, we obtain δsδr = λD

Ns−1 . From
reciprocity, we further infer δsδr = λD

Nr−1 . To prevent
aliasing in the wavenumber domain, the antenna spacings
must yield the largest spectrum separation, namely

δsδr =
λD

Nmax − 1
(30)

with Nmax = max(Nr, Ns).
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The so-called Rayleigh spacings ds and dr, which
enable full DOF exploitation and are therefore optimum
at a high signal-to-noise ratio, satisfy [17, Eq. 10]

dsdr =
λD

Nmax
, (31)

which coincides with (30) when Nmax � 1, i.e., when
Nyquist sampling attains perfect reconstruction [13].

VII. CONCLUSION

The paraxial approximation endows LOS channels
with a bandlimited nature in the wavenumber domain,
a nature from which the DOF formula can be obtained
via Landau’s eigenvalue theorem [15], [16]. As in NLOS
channels [1], [2], the ensuing DOF are determined by the
size and geometry of the arrays and the angular selectivity
of the environment. LOS channels are inherently
geometrical [17], with the angular selectivity dictated by
the solid angle subtended by the source at the receiver.
Three physical effects play a role: zooming, inversely
proportional to the wavelength, skewing, function of
the relative array orientations, and magnification as the
communication range shrinks.

APPENDIX A
Plugging (7) into the plane-wave representation in (4),

ĥ(r, s) =
η

2λ
e−j2π

D
λ

∫
Rn
ejπλD‖k‖

2

ej2πk
T(r−s) dk, (32)

from which, removing unwanted constants,

ĥ(x) =

∫
Rn
ejπλD‖k‖

2

ej2πk
Tx dk (33)

where x = r−s. Eq. (33) can be computed independently
along each axis, e.g., along the x-axis,

ĥ(x) =

∫ ∞
−∞

ejπλDκ
2
x ej2πκxx dκx. (34)

We recall that [21, Eq. 7.4.6],∫ ∞
−∞

e−
π2

a f
2

ej2πft df =

√
a

π
e−at

2

(35)

for any a ∈ C with Re(a) > 0. Contrasting (35) with (34),
we set a = jπ

λD to obtain ĥ(x) = e−
jπ
λD x

2

where all known
constants have been omitted. The condition Re(a) > 0
maps to a lossy medium. Reintroducing vector notation to
account for n-dimensional arrays and omitting all known
constants,

ĥ(r, s) = e−
jπ
λD ‖r−s‖

2

. (36)

Expanding and rearranging the quadratic terms in (36),
we obtain [17]

ĥ(r, s) = φ(r) ej
2π
λD sTr φ(s) (37)

where φ(x) = exp
(
−j πλD‖x‖

2
)
. The channel kernel

entails two separable quadratic phase shifts and a cross

phase shift that depends on the relative source and receive
locations. With the geometry known at each end of the
link, φ(s) and φ(r) can be compensated for, yielding (8).
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