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Abstract—This paper provides a deterministic channel
model for a scenario where wireless connectivity is
established through a reflection off a smooth planar surface
of an infinite extent. The developed model is rigorously built
upon the physics of wave propagation and is as precise as
tight are the unboundedness and smoothness assumptions on
the surface. This model allows establishing how line-of-sight
multiantenna communication is altered by a reflection off
an electrically large surface, a situation of high interest for
mmWave and terahertz frequencies.

I. INTRODUCTION

The wealth of unexplored spectrum in the millimeter

wave (mmWave) and terahertz ranges brings an onrush of

wireless research seeking its fortune at higher frequencies

[2]–[4]. The short range for which these frequencies are

most suitable, in conjunction with the tiny wavelength,

enable reasonably sized arrays to access multiple spatial

degrees of freedom (DOF) even in line-of-sight (LOS)

[5]. Precisely, LOS spatial multiplexing is made possible

by the rich pattern of phase variations of the radiated

field’s spherical wavefront, which mimics the diversity

richness of multipath propagation at lower frequencies.

This potential has unleashed much research activity

on wide-aperture multiple-input multiple-output (MIMO)

communication over LOS channels [6], [7].

A downside of these high frequencies is blockage

and lack of diffraction around obstacles, which may

render LOS MIMO vulnerable to interruptions. This

naturally raises the interest in studying whether

wide-aperture MIMO could also operate through a

reflection, capitalizing on the availability in many

environments of interest of surfaces that are electrically

(i.e., relative to the wavelength) large.

This paper seeks to examine MIMO communication via

reflection off a smooth planar surface of infinite extent.
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To this end, one possibility would be to apply ray-tracing

tools [8], but the accuracy to which the environment

should be characterized to prevent artifacts is not known

a priori. Also, ray tracing does not provide analytical

insights into the underlying propagation mechanisms,

which are essential to array optimization. Instead, we

derive a deterministic physics-based scalar channel model

that is valid irrespective of the communication range and

embodies other models as particular cases.

A. Contributions

Although an actual reflecting surface is necessarily

finite and with some degree of roughness, at sufficiently

high frequencies it may be reasonably regarded as

infinitely large, as the impact of diffraction vanishes.

Oppositely, the roughness is emphasized at high

frequencies as irregularities on the surface become

comparable to the small wavelengths. The latter aspect

is not considered in this paper, left for future work.

Motivated by the extensive physics literature on the

interaction between a plane wave and an infinite smooth

surface [9], [10], we start by expanding the 3D field

generated by an arbitrary source in terms of plane

waves [10], [11]. Fundamental principles describing the

reflection and transmission phenomena at the surface

can then be applied to each plane wave separately

and combined to obtain the overall field at any point

[10]. An LOS channel is seen to be the cascade of a

low-pass filter that cuts off evanescent waves [12], and a

reverse-bowl-shaped filter imposed by the wave equation

[13]; a reflection off a surface adds an additional filtering

stage that augments the model in [12], [13] with backward

propagation. This paper can also be seen to complement

the zero-mean stochastic model derived in [14], with their

conjunction yielding a Rician fading model.

After discretization through spatial sampling, a

deterministic description of the channel is obtained. This

is finally used to numerically evaluate the eigenvalues,

DOF, and spectral efficiency for the purpose of MIMO

communication. Altogether, the contributions are:

• Starting from first principles, a channel model is

developed that builds upon the physics of wave

propagation. The analysis is as precise as tight are

http://arxiv.org/submit/5069938/pdf
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the unboundedness and smoothness assumptions on

the surface.

• Progress is made, in the wake of [12]–[14],

towards a comprehensive physics-based modeling of

wireless propagation on which signal processing and

communication theorists can test their algorithms.

Propagation is described in terms of spatial Fourier

transforms and linear system theory, notions central

to both communities.

• Classical electromagnetic results such as the image

theorem are revisited. These have fundamental

implications on the optimization of antenna spacings

as a function of the signal-to-noise ratio (SNR) and

they allow extending results available for a pure LOS

channel [15], [16] to a reflection channel.

B. Outline and Notation

The manuscript is organized as follows. Sec. II revisits

the physics behind plane-wave reflection off a smooth

planar surface relying solely on linear system theory

and Fourier transform. In Sec. III, the Fourier spectral

representations of the LOS and reflected transmissions

are derived. The connection with the image theorem

is established in Sec. IV, whereas the channel impulse

response follows in Sec. V. After discretization, the

channel response is used in Sec. VI to assess the MIMO

performance via reflection. A comparison with ray-tracing

is presented in Sec. VII. Final discussions and possible

extensions are set forth in Sec. VIII.

We use upper (lower) case letters for spatial-frequency

(spatial) entities while J0(·) is the Bessel function of the

first kind with order 0, (x)+ = max(x, 0), and δ(·) is the

Dirac delta function.

II. PLANE-WAVE INTERACTION WITH MATERIALS

Narrowband propagation is considered at angular

frequency ω in a 3D medium with an inhomogeneity

created by a z-oriented planar object of infinite thickness,

dividing the medium into a region 1 {rz < 0} (free space)

and a region 2 {rz > 0} (material). The electromagnetic

properties are constant in each of the two ensuing regions,

characterized by the refractive indexes n1 = 1 and

n2 ∈ C with Re(n2) ≥ 1 and Im(n2) > 0 modeling the

phase variations and absorption losses occurring inside

the material [17, Sec. 4.2]. The wavenumbers in the two

regions are κ1 = 2π/λ and

κ2 = n2κ1. (1)

A. Dielectric Half-Space

We first consider the xz-plane containing the direction

of propagation and the surface normal, namely the plane
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Figure 1. Fresnel reflection coefficient (magnitude) as a

function of θi for various refractive indices.

of incidence.1 A point in this plane has coordinates

(rx, rz). An upgoing incident plane wave

ei(rx, rz) = Ei(θi) e
jκ1(rx sin θi+rz cos θi) (2)

with amplitude Ei(θi) traveling in region 1 from an angle

θi relative to the surface normal impinges thereon. As a

result of interaction with the surface, this field creates a

downgoing reflected plane wave in region 1,

er(rx, rz) = Er(θr) e
jκ1(rx sin θr−rz cos θr), (3)

with amplitude Er(θr) and angle θr and another upgoing

transmitted plane wave in region 2,

et(rx, rz) = Et(θt) e
jκ2(rx sin θt+rz cos θt), (4)

with amplitude Et(θt) and angle θt. Derivable from the

boundary conditions, Snell’s law dictates that reflection

occurs at the specular angle θr = θi while transmission

is specified by sin(θt) = sin(θi)/n2 [9, Eq. 1.5.6]. The

complex-valued plane-wave amplitudes can be written in

terms of the Fresnel coefficients R(θi) = Er/Ei and

T (θi) = Et/Ei, specifying the fraction of incident field

reflected from or transmitted across the surface, for every

incident angle. Their magnitude is always less than unity,

and they satisfy the unitarity relation T (θi) = 1 + R(θi)
due to conservation of energy.

Multiple reflections that might arise inside an object

of finite thickness would make the interaction with the

surface more involved [10, Ch. 2.1.3]. However, these

never occur at frequencies high enough such that the

material thickness is much larger than the wavelength,

making the reflection phenomenon highly predictable and

suitable for array optimization, as will be seen.

1This plane can always be obtained by rotating the Cartesian reference
frame opportunely about the x-axis.
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The complex-valued Fresnel reflection coefficient is

given by [18, Eq. 7.4.2]2

R(θi) =
cos(θi)−

√
n2
2 − sin2(θi)

cos(θi) +
√
n2
2 − sin2(θi)

, (5)

whose magnitude is plotted in Fig. 1 as a function of

θi for various dielectric materials [19]. Total reflection

is achieved by a perfect conductor, which behaves as a

mirror. Other materials behave as perfect conductors only

at a grazing incidence. In general, denser materials reflect

energy better and, for a given material, close-to-grazing

incidences experience higher reflections than those near

the normal.

B. Linear-System-Theoretic Interpretation

We now deviate from physics and provide a different

viewpoint on the interaction mechanism with the surface;

this perspective relies only on linear system theory

and Fourier transforms, key results in the toolbox of

communication theorists.

The propagation directions of the incident, reflected,

and transmitted plane waves may alternatively be specified

by the wavenumber coordinates

(κx,±κ1z) = (κ1 sin θi,±κ1 cos θi) (6)

(κx, κ2z) = (κ2 sin θt, κ2 cos θt) (7)

satisfying the dispersion relations κ2
x + κ2

iz = κ2
i for i =

1, 2. By means of (6), the plane waves in (2) and (3) can

be seen as the 2D Fourier harmonics

ei(rx, rz) = Ei(κx) e
j(κxx+κ1zz) (8)

er(rx, rz) = Er(κx) e
j(κxx−κ1zz), (9)

which are functions of the spatial-frequency variables

(κx, κ1z). The same holds for (4), expressed as

et(rx, rz) = Et(κx) e
j(κxx+κ2zz) (10)

for (κx, κ2z). The connection with Fourier theory that

the above change of variables establishes enables a

linear-system-theoretic interpretation of the reflection and

transmission phenomena, with the focus henceforth being

on the reflection.

The response to a harmonic input at spatial frequency

(κx, κ1z) is another harmonic output at the same spatial

frequency—up to a change of sign in κ1z due to the

reflected wave traveling in the opposite direction—whose

2For every angle θi there are two linearly independent plane waves
being the solutions of the two scalar wave equations characterizing the
transverse electric (TE) polarization, where the electric field is parallel
to the surface, and the transverse magnetic (TM) polarization, where
the magnetic field is parallel [10, Ch. 2.1]. We concentrate on the TE
equation as the TM’s is obtainable by invoking the duality principle.

rz = D0

ẑ

θi

θr = θi

(κx,κ1z)

x̂

ŷ ei(r)

er(r)
et(r)(κx,−κ1z)

(κx,κ2z)

j(r)R0

rz = 0

(air) (dielectric)
n1 = 1 n2 ∈ C

θt

Figure 2. Scalar wave propagation in a 3D isotropic

and inhomogeneous medium. View from the plane of

incidence.

complex amplitude is the product of the input’s amplitude

and the Fresnel spectrum, given by [10, Eq. 2.1.13]

R(κx) =
κ1z − κ2z

κ1z + κ2z
(11)

for dielectric materials; this follows from (5) after a

change of variables to wavenumber coordinates while

using (1).

Remarkably, a behavior of this sort characterizes a

linear and space-invariant (LSI) system, which is fully

described by its wavenumber response R(κx) for any κx.

III. PLANE WAVE SPECTRAL REPRESENTATION

Consider now every possible vertical plane obtainable

by rotating the xz-plane of incidence (i.e., φi = 0) about

the x-axis by an angle φi ∈ [0, 2π). This brings into play

other variables in the spatial and wavenumber domains,

which we embed into the vectors r with coordinates

(rx, ry) and κ with coordinates (κx, κy).

The field ei(r, rz) radiated by a source of electric

current j(r, rz) is described exactly by an integral

superposition of complex harmonics of different

amplitudes and spatial frequencies via the Fourier (plane

wave) spectral representation [10], [11]. Precisely, for a

source enclosed within a sphere of radius 0 < R0 < D0

(see Fig. 2),

ei(r, rz) =





∫∫ ∞

−∞

E−
i (κ) ejκ

T
r

dκ

(2π)2
rz < −R0

∫∫ ∞

−∞

E+
i (κ) ejκ

T
r

dκ

(2π)2
rz > R0

(12)

with complex-valued amplitudes

E±
i (κ) =

κ1η1
2

J±(κ)

κ1z
e±jκ1zrz (13)
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specified by the source’s spectrum J±(κ) obtained via a

3D Fourier transform of j(r, rz) evaluated at κz = ±κ1z,

κiz being defined as

κiz =
√
κ2
i − ‖κ‖2, (14)

for i = 1, 2. Thus,

J±(κ)=

∫∫∫ ∞

−∞

j(s, sz) e
−j(κT

s±κ1zsz) dsdsz (15)

given η1 ≈ 120π as the wave impedance of free-space.

The reflected field er(r) follows from the linearity

of the spatial filtering operation applied by the surface

and the delay property of the Fourier transform, as the

surface is placed at an arbitrary distance D0 from the

source, along the z-axis; see Fig. 2. The Fourier spectral

representation of er(r) is therefore

er(r, rz) =

∫∫ ∞

−∞

E+
i (κ)R(κ) e−jκ1z(rz−2D0)ejκ

T
r

dκ

(2π)2

(16)

with R(κ) the Fresnel spectrum in (11) and κ1z as

defined in (14). Physically, the reflected field is created by

superimposing the interactions with all possible incident

contributions on the plane of incidence and for all possible

vertical planes. With respect to an incident plane wave,

a reflected plane wave exhibits an extra phase shift

that accounts for the round-trip delay accumulated by

the incident wave during the travel to the surface and

back, along the z-axis. This effect can be regarded as a

migration of the incident field and is directly connected

to the image theorem, as discussed in Sec. IV.

IV. IMAGE THEOREM

Plugging (13) into (12), the incident field in {rz > R0}
is

ei(r, rz)=
κ1η1
2

∫∫ ∞

−∞

J+(κ)

κ1z
ej(κ

T
r+κ1zrz) dκ

(2π)2
(17)

where J+(κ) is given by (15). Similarly, the reflected field

in (16) can be rewritten as

er(r, rz) =
κ1η1
2

∫∫ ∞

−∞

Jr(κ)

κ1z
ej(κ

T
r−κ1zrz) dκ

(2π)2
(18)

where

Jr(κ) = J+(κ) e
jκ1z2D0 R(κ). (19)

Notice that (18) and (17) have the same form. Hence,

Jr(κ) may be regarded as the Fourier spectrum of a

fictitious source jr(r, rz). For R(κ) = −1, the reflected

field in (18) may be reproduced by replicating the source

at rz = 2D0, which accounts for the field migration to the

surface and backward. This is the image theorem, whereby

the reflection elicited by a perfect conductor is equivalent

to a mirror image of the source [20, Sec. 4.7.1]. As an

example, for a point source j(r, rz) = δ(r)δ(rz), i.e., for

J+(κ) = 1, applying Weyl’s identity [10, Eq. 2.2.27]

ejκ1‖(r,|rz|)‖

‖(r, |rz |)‖
=

j

2π

∫∫ ∞

−∞

ej(κ
T
r+κ1z|rz|)

κ1z
dκ, (20)

from (18) we obtain

er(r, rz) = j
κ1η1
4π

G(r, rz ,0, 2D0) (21)

where

G(r, rz , r
′, r′z) =

ejκ1‖(r−r
′,rz−r′

z
)‖

4π ‖(r − r′, rz − r′z)‖
(22)

is the Green’s function describing a spherical wave

generated at (r′, r′z) and measured at (r, rz). Hence,

jr(r, rz) = δ(r)δ(rz − 2D0).
For arbitrary materials, jr(r, rz) is obtained from the

spatial convolution

jr(r, rz) =

∫∫ ∞

−∞

j(u, rz − 2D0) r(r − u) du (23)

of the image source and the impulse response of the

surface,

r(r) =

∫∫ ∞

−∞

R(κ) ejκ
T
r

dκ

(2π)2
, (24)

which is defined as the 2D inverse Fourier transform of

R(κ) in (11). The azimuthal dependance of r(r) can

be eliminated by evaluating (24) at (‖r‖, 0), which is

possible due to the circular symmetry of R(κ).
From (23), we infer that the spatial filtering applied by

the surface creates a blurred image of the source. This

effect vanishes in perfect conductors, recreating a perfect

image. For a point source, jr(r, rz) = r(r)δ(rz − 2D0),
r ∈ R

2, modeling the impressed currents induced by the

source on the entire surface.

The spatial filtering simplifies when the surface is far

enough from the source that the reflected propagation

occurs in the paraxial regime. Then, R(κ) is roughly

constant for all possible incident angles and given by

the complex material reflectivity [9, Sec. 1.5.3]. Due

to the impulsiveness of the reflection mechanism under

the paraxial assumption, the image source becomes a

weakened (and phase-shifted) version of the original

one, which is the premise of ray-tracing algorithms.

However, this need not be the case in wide-aperture

MIMO, which rests on the range being short; this

aspect is further expounded in Sec. VII. The implications

on the optimization of antenna spacings in MIMO

communication are discussed in Sec. VI.

V. CHANNEL IMPULSE RESPONSE

A complete description of what unfolds in region 1 is

obtained by combining all contributions into

e(r, rz) = ei(r, rz) + er(r, rz) (25)
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e(r, rz) =





∫∫ ∞

−∞

(
E−

i (κ)e−jκ1zrz + E+
i (κ)R(κ)e−jκ1z(rz−2D0)

)
ejκ

T
r

dκ

(2π)2
rz < −R0

∫∫ ∞

−∞

E+
i (κ)

(
ejκ1zrz +R(κ)e−jκ1z(rz−2D0)

)
ejκ

T
r

dκ

(2π)2
R0 < rz ≤ D0

(27)

H(κ; rz , sz) =





κ1η1
2

1D(κ)

κ1z

(
e−jκ1z(rz−sz) +R(κ)e−jκ1z(rz+sz−2D0)

)
rz < −R0

κ1η1
2

1D(κ)

κ1z

(
ejκ1z(rz−sz) +R(κ)e−jκ1z(rz+sz−2D0)

)
R0 < rz ≤ D0

(30)

H(k,κ) =
κ1η1
2

δ(k − κ)
1D(κ)

κ1z
·





(
0 0

R(k)ej2κ1zD0 1

)
rz < −R0

(
1 0

R(k)ej2κ1zD0 0

)
R0 < rz ≤ D0

(34)

whose expression is given by (27) after substituting (12)

and (16). The input-output relationship between j(s, sz)
and e(r, rz) is the spatial convolution [14]

e(r, rz) =

∫∫∫ ∞

−∞

j(s, sz)h(r, rz , s, sz) dsdsz (28)

where h(r, rz, s, sz) is the channel impulse response.

Combining (27), (13), and (15), the channel response can

be written as the 2D inverse Fourier transform

h(r − s; rz , sz) =

∫∫ ∞

−∞

H(κ; rz , sz) e
jκT(r−s) dκ

(2π)2

(29)

of H(κ; rz, sz) in (30). Here, the integration domain

is practically limited to a disk D of radius κ1 =
2π/λ, correctly showing the low-pass-filtering behavior

of the wireless propagation [12], [14], which is then

converted into a functional dependence through an

indicator function. The reflected channel is space invariant

over any pair of parallel z-planes. This extends to any pair

of parallel planes, not necessarily z, for an LOS channel.

The space invariance is a direct consequence of the

unboundedness and smoothness of the reflecting surface

and enables a linear-system-theoretic interpretation of

the reflection and transmission phenomena. Precisely,

communications between any two different z-planes

cutting source and receiver can be regarded as an LSI

system with the wavenumber response in (30). There

are three main terms in (30), plus a phase shift due to

migration, that may be interpreted as the cascade of:

• First, 1D(κ), a low-pass filter introduced by the

migration operation [12], [14].

• Then, 1/κ1z, which confers a reverse-bowl behavior

to H(κ; rz , sz) and is directly attributable to the

wave equation [13], [14].

• Finally, R(κ) models the reflection. This depends on

κ via κiz in (14), hence it is circularly symmetric in

the wavenumber domain, which is instrumental to

devise an efficient numerical procedure to generate

channel samples (see Appendix).

The space-invariant channel in (29) generated by a

specular reflection is obtainable as a particular instance

of the double 2D Fourier transform [14, Sec. III]

h(r, rz , s, sz) =

∫∫∫∫ ∞

−∞

H(k,κ; rz , sz)

· ejk
T
re−jκT

s
dk

(2π)2
dκ

(2π)2
(31)

of the wavenumber response

H(k,κ; rz , sz) = φH(k, rz)H(k,κ)φ(κ, sz), (32)

given φ(κ, sz) =
(
e−jκ1zsz , ejκ1zsz

)
T

. The above is

parametrized by the wavenumber matrix

H(k,κ) =

(
H++(k,κ) H+−(k,κ)
H−+(k,κ) H−−(k,κ)

)
(33)

that models the coupling between every input spatial

frequency κ and every other output spatial frequency k.

It can also be regarded as an angular response mapping

every incident plane wave traveling along (κ,±κ1z) into

every other receive plane wave from (k,±κ1z). The

convention adopted for the entries of (33) is that the

first and second subscripts refer, respectively, to received

and incident plane waves (each one being associated with

upgoing or downgoing waves).

We next find the parameterization of H(k,κ) that

models the scenario in Sec. III. By inspection, comparing

(29)–(30) against (31), yields (34). The entries of

the angular matrix are impulsive because incident and

received plane waves are in one-to-one correspondence:

each incident wave turns into a received wave with

specular direction, as specified by Snell’s law.
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Figure 3. ULAs separated by D and equipped with

Nt = Nr = 8 antennas with spacing d. Arrays have

arbitrary orientations ϑt and ϑr with respect to the

x-axis. The clear and solid circles at source and receiver

indicate the antennas and their projections onto the x-axis,

respectively. Antennas are connected either via a LOS or

a reflected channel off a z-oriented surface. We denote

by θ0 the angle formed by the surface normal and the

geometrical path connecting the centroids of the image

source and receiver.

Generally, the surface of a material object may appear

as either smooth or rough depending on the frequency.

A rough surface at microscopic level reflects every

impinging plane wave off multiple directions creating

a diffuse reflection spectrum, typically centered around

the specular direction. These surface irregularities are

accounted by a non-impulsive H(k,κ) in (32), whose

computation is left for future work.

VI. APPLICATION TO MIMO COMMUNICATION

Let us now apply the developed model to evaluate the

channel eigenvalues, DOF, and spectral efficiency.

With Nt transmit and Nr receive antennas, the channel

matrix H ∈ CNr×Nt is obtained by sampling the impulse

response at the antenna locations, [H]m,n = h(rm, sn)
for m = 0, . . . , Nr−1 and n = 0, . . . , Nt−1. The transmit

array is centered at the origin whereas the centroid of

the receive array is at r0 = (r0x, r0y, r0z). An efficient

numerical generation procedure for H is provided in the

Appendix.

Let Nmin = min(Nr, Nt) and Nmax = max(Nr, Nt).
We consider uniform linear arrays (ULAs) at 57.5 GHz

(see Fig. 3) under the proviso that those ULAs

are substantially shorter than their separation range,

the so-called paraxial approximation, so we can

leverage results available for LOS channels [15], [16].

The transmitting and receiving ULAs have arbitrary

orientations ϑt and ϑr with respect to the x-axis.

We hasten to emphasize that the reliance on the paraxial

approximation is confined to the production of benchmark

results for LOS MIMO, with our channel model being

valid regardless. The frequency, in turn, is motivated by

mmWave applications [2] and by availability of refractive

indices for most common materials [19].

A. Parallel Arrays Optimized for LOS Transmission

Consider parallel ULAs aligned with the x-axis, with

Nt = Nr = 8 and antenna spacing d. The range is

D = 10 m whereas the surface is at D0 = 15 m. First,

we validate the model in LOS, for which the closed-form

solution in (22) is available. The channel matrix obtained

by sampling (22) is compared to the LOS component in

our model, derivable after an inverse Fourier transform of

the first term in (30), the LOS term, according to (29),

followed by spatial sampling. Setting

d(D) =
√
λD/Nmax, (35)

renders H a Fourier matrix and is optimum at high SNR

[5], [15]. The normalized eigenvalues of HHH, λn(H),
are plotted in Fig. 4. The perfect match validates the

numerical procedure in the Appendix for this LOS setting.

Then, we validate the model under perfect reflection.

To this end, the channel obtained by imaging the source

is compared against the one associated with the perfect

reflection in our model; the latter is obtained by plugging

the second term in (30) with R(κ) = −1 into (29) and

sampling.

The eigenvalues of the reflected channel matrix are

further shown in Fig. 4 for different materials. These

undergo two effects relative to their LOS brethren:

• Power loss caused by the longer range and by the

reflection of only a share of the incident power, with

dense materials and shallow angles reflecting better.

• Spatial selectivity due the antenna spacing in (35)

being suboptimally small for the longer range of the

reflected channel.

We now gauge the capacity with channel-state

information at the transmitter, which equals [21], [22]

C(H, SNR) =

Nmin∑

n=1

log2

(
1 +

(
ν −

1

λn(H)

)+
λn(H)

)

(36)

where ν is such that
∑Nmin

n=1 (ν − 1/λn(H))+ = SNR

while
∑Nmin

n=1 λn(H) = NrNt. At any given SNR,

C(SNR) = maxH C(H , SNR) satisfies [15], [16]

C(SNR) ≤ max
ρ∈{1,2,...,Nmin}

ρ log2

(
1 +

SNR

ρ

NrNt

ρ

)
,

(37)

with the upper bound corresponding to ρ nonzero

eigenvalues equal to NrNt/ρ and to the SNR-dependent

antenna spacing

d(D, SNR) =
√
η(SNR)λD/Nmax, (38)
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Figure 4. Normalized channel eigenvalues for various

materials. Parallel ULAs separated by D = 10 m with

spacing d(D) in (35).
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Figure 5. Spectral efficiency as a function of SNR for

various materials. Parallel ULAs separated by D = 10 m

with spacing d(D, SNR) in (38).

for a fraction η(SNR) = ρ(SNR)/Nmin of the Nmin

potential DOF. Thus, η ∈ [0, 1] with η = 1 at high enough

SNR. The capacity C(H , SNR) is reported in Fig. 5 for

the antenna spacing, d(D, SNR), that is optimum for the

LOS channel at every SNR. With respect to the LOS case,

the capacity of the reflected channel experiences an offset

(power loss, due to the longer range) and a reduced slope

(DOF loss, due to the spatial selectivity).

B. Parallel Arrays Optimized for the Reflected

Transmission

While the power loss is inevitable, because of the longer

range, the spatial selectivity can be corrected by tailoring

the antenna spacing to the equivalent LOS transmission

from the image source. To this end, recall from the image

theorem that the reflected channel can be regarded as an

LOS channel with augmented distance De > D; in the

1 2 3 4 5 6 7 8
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-40

-30

-20

-10

0

Figure 6. Normalized channel eigenvalues for various

materials. Parallel ULAs separated by D = 10 m with

spacing d(D) for the LOS channel and d(De) for the

reflected channel.
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Figure 7. Spectral efficiency as a function of SNR

for various materials. Parallel ULAs separated by D =
10 m with spacing d(D, SNR) for the LOS channel and

d(De, SNR) for the reflected channel.

setting of Figs. 4 and 5, De = 2D0 −D. For a perfect

conductor, this alone justifies the choice of an antenna

spacing equal to d(De). The argument is somewhat more

involved for arbitrary materials, due to the distortion

introduced by reflection, but it ultimately leads to the same

observation as illustrated in Fig. 6. Numerically, this is

supported by the invariance of the curves for the materials

in Fig. 4. Physically, it is explained by the paraxial

approximation, whereby the field has an approximately

constant wavenumber response in magnitude. Hence, the

reflection has an approximately multiplicative effect on

the channel impulse response in (30) and the whole

interaction phenomenon with the surface is described by

the reflectivity coefficient, R(θ0), which is derivable from

(5) after setting θi = θ0 with θ0 as per Fig. 3.

Similarly, the eigenvalues of the reflected MIMO
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Figure 8. Pathloss as a function of D for different

materials at normal incidence.

channel HHH are obtained by scaling the LOS

eigenvalues uniformly by |R(θ0)|
2. From (5), for the

chosen materials, setting θi = θ0 yields a scaling of

7.19 dB (concrete), 9.63 dB (floorboard), and 13.98 dB

(plaster board). These values describe the gap in Fig. 6

between the eigenvalues of the reflected channel for

various materials and those of a perfect conductor. The

additional gap to the LOS channel is due to the enhanced

range, a loss of 6.02 dB in our setting.

For completeness, Fig. 7 shows the spectral efficiency

corresponding to the eigenvalue distributions in Fig. 6.

With respect to Fig. 5, the antenna spacing is d(D, SNR)
for the LOS channel and d(De, SNR) for the reflected

channel, which lead to the same DOF.

C. Power Loss and Spatial Selectivity for Parallel Arrays

We have seen that the power loss is determined by the

additional range and by the share of incident power not

reflected by the surface. This is constant over the arrays

themselves as amplitude variations thereon are negligible

with the proviso that propagation occurs in the paraxial

regime. From the image theorem,

β = |R(0)|2
(

λ

4πDe

)2

(39)

where De = 2D0 − D and R(0) = (1 − n2)/(1 + n2).
In Fig. 8, β is plotted as a function of (D0 − D) for

different materials. The interface is at D0 = 15 m from

the source, while the range between receiver and surface

varies accordingly to (D0 −D).
Receiver motion away from the surface, if unaccounted

for, leads to a decreasing stepwise function of D−D0 ∈
[0, D0]; this is shown in Fig. 9, where the DOF equal the

number of eigenvalues that are at most 40 dB below the

maximum. Correcting the antenna spacing as a function

of D prevents this decrease.

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

Figure 9. Number of DOF as a function of (D0 − D)
when the material is concrete. Parallel ULAs.

20 30 40 50 60 70 80

-115
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-105

-100

-95

-90

Figure 10. Pathloss as a function of θ0 for various

materials. Oblique incidence with the receiver at r0x ∈
[0, 100] m and r0z = 10 m.

D. Non-Parallel Arrays

Non-parallel ULA configurations arise either when the

receiver is shifted along the x-axis, creating an oblique

incidence (θ0 > 0), or when arrays are oriented differently

in elevation (ϑt 6= ϑr); see Fig. 3. The relative azimuth

angle is set to zero, as it is immaterial to ULAs [16]. With

the focus on oblique incidence and its impact on power

loss and spatial selectivity, the ULAs are aligned with the

x-axis (ϑt = ϑr = 0).

First, let us consider the power loss. Due to rotational

symmetry about the x-axis, the xz-plane can be selected

without loss of generality. The pathloss in (39) generalizes

to arbitrary receive positions when using

De(θ0) =
2D0 − r0z
cos(θ0)

, (40)

and R(θ0), which are parametrized by the incident angle

θ0 = arccos

(
2D0 − r0z√

D2 + 4D0(D0 − r0z)

)
. (41)
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(a) Projected view on the yz-plane (top view of Fig. 3).
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(c) Modeling of oblique incidence as a relative orientation.

Figure 11. Non-parallel ULA configuration arising from

an oblique incidence with ULAs oriented as the x-axis.
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Figure 12. Normalized channel eigenvalues for various

materials. Oblique incidence with the receiving ULA at

r0 = (1, 4, 10) m (hence, ϑ = 5.3◦ and ϑe = 2.8◦). The

antenna spacings are d(D, SNR, ϑ) for the LOS channel

and d(De, SNR, ϑe) for the reflected channel.

Fig. 10 depicts β for various materials. The receiver is

shifted along the x-axis on the interval r0x ∈ [0, 100] m

with r0z = 10 m such that D = (r20x + r20z)
1/2.
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SNR
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30

40

Figure 13. Spectral efficiency as a function of SNR

for different materials. Non-parallel ULAs with spacing

d(D, SNR, ϑ) for the LOS channel and d(De, SNR, ϑe)
for the reflected channel.

Second, we turn to spatial selectivity. Consider oblique

incidence on a vertical plane, not necessarily the xz-plane.

Its projected views on the yz-plane and on the xz-plane

are illustrated in Figs. 11a and 11b. For the side view in

Fig. 11b, we define

D̂ = D/

√

1 +

(
r0y
r0z

)2
(42)

D̂e = De/

√

1 +

(
r0y

2D0 − r0z

)2
, (43)

which are obtained by projecting their counterparts D
and De onto the xz-plane; see Fig. 11a. As sketched

in Fig. 11c, shifting the receiver along the x-axis is

equivalent to rotating the transmitting and receiving ULAs

with respect to the x-axis by an angle

ϑ = arccos
(
r0z/D̂

)
(44)

for the LOS channel, and by another angle

ϑe = arccos

(
2D0 − r0z

D̂e

)
(45)

for the reflected channel. Unlike the power loss, spatial

selectivity can be corrected by tailoring the ULA spacing

opportunely [16]. To this end, for the LOS channel,

d(D, SNR, ϑ) =
d(D, SNR)

cos(ϑ)
, (46)

with d(D, SNR) the optimal antenna spacing for parallel

ULAs in (38) whereas, for the reflected channel,

d(De, SNR, ϑe) with De in (40) and ϑe in (45). Compared

to parallel ULAs, non-parallel ULAs have antennas that

are spaced further apart due to the division by cos(·)
in (46). The potential DOF thereby shrink for ULAs

tilted sideways. At high SNR, since η(SNR) = 1 in
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Figure 14. Spectral efficiency as a function of the array

apertures over equivalent distance ratio at SNR = 0 dB

when the material is concrete. The antenna spacing is

optimized for the reflected transmission.

(38), d(D, SNR) reduces to d(D) in (35) leading to

full-rank channel matrices for the LOS and reflected

channels. This property is validated in Fig. 12 for an

x-oriented ULA located at r0 = (1, 4, 10) m, i.e., for

ϑ = 5.3◦ and ϑe = 2.8◦. Finally, the spectral efficiency

with ULA spacings optimized at every SNR for the LOS

and reflected transmissions is also shown in Fig. 13 for

different materials.

VII. IMPLICATIONS FOR RAY TRACING ALGORITHMS

NLOS connectivity is typically established via multiple

reflections involving possibly distinct materials and

orientations. Analysis becomes unwieldy in such general

settings and the recourse are numerical algorithm such

as ray tracing [17]. Our setup provides insights into the

mechanisms involved at each stage of reflection.

Our exact channel model describes the reflected

propagation as an LSI filtering, whereas the ray-tracing

model regards the convolving response as an impulse

weighted by the reflectivity coefficient in (5) at θi = θ0.

To appreciate the difference between the exact and the

approximated method (ray-tracing) one should increase

the array apertures Lr and Lt for a given communication

range De, thus violating the sufficient condition for

the reflected transmission to be paraxial. To this end,

Fig. 14 depicts the spectral efficiency of the reflected

channel between two ULAs of apertures Lr = Lt = L
as a function of L/De at SNR = 0 dB. The ULAs

are separated by D = 2 m and the surface distance is

D0 = 3 m so that De = 4 m. In turn, the antenna

spacing is optimized for the reflected transmission, which

implies array apertures linearly increase with the number

of antennas.

The ray-tracing curve yields a tight match with the

exact one, except for the regime where the two arrays

have an aperture L comparable to the range De of

the reflected transmission. Hence, ray tracing algorithms

leveraging the paraxial approximation offer a good

fit to reality, as also supported by the robustness of

the underlying approximation against changes in the

propagation geometry.

VIII. CONCLUSION

Through a physics-based formulation, we have

confirmed that reflection off a large and smooth planar

surface, say a wall or ceiling, can serve as alternatives

to LOS for wide-aperture MIMO communication. With

respect to an LOS link, a reflected counterpart exhibits:

• A power loss determined by the additional range and

by the share of incident power not reflected by the

surface.

• A reduction in the number of DOF because of

the antenna spacing tailored to the LOS link being

smaller than the one that the reflected link would

require at the same SNR.

If the arrays are outright configured for the reflected

transmission, then the second effect is corrected. The

above observations bode well for flexible LOS MIMO

communication aided by reflections, with further work

required to determine the impact of surface finiteness and

roughness. This paper ignores mutual coupling effects

among antenna elements, which are most impactful at

sub-wavelength spacings [23]. This ought not to be the

case for wide-aperture MIMO that envisions electrically

large antenna spacings, with follow-up studies needed to

confirm this hypothesis.

Connection with the image theorem that underlies ray

tracing showed that, with non-planar wavefronts, the

image of the transmitter is blurred by the convolution

with a response modeling the not perfect reflectivity of

the surface. Ray tracing ignores this blurring, which is

to say it regards the convolving response as an impulse.

However, our findings show that only for very large arrays

does the response depart from an impulse, justifying the

use of ray tracing algorithms [8] in most situation.

APPENDIX

GENERATION OF THE MIMO CHANNEL MATRIX

For the sake of compactness, let us define the space-lag

variable δ = r − s with coordinates δx = rx − sx and

δy = ry − sy , indicating the displacement between source

and receiver on the z-plane. Due to circular symmetry

of H(κ; rz , sz) in (30), we eliminate the azimuthal

dependance of the channel impulse response by evaluating

(29) at (δρ, 0), δρ = ‖δ‖. The result is reported in (47) for

any given sz and rz where we introduced κρ = ‖κ‖ ∈
[0, κ1] within κ ∈ D. Hence, the impulse response is

invariant under any affine transformation that preserves

the distance between source and receiver on the z-plane.
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h(δρ; rz , sz) =





κ1η1
4π

∫ κ1

0

κρ
J0(κρδρ)

κ1z

(
e−jκ1z(rz−sz) +R(κρ)e

−jκ1z(rz+sz−2D0)
)
dκρ rz < −R0

κ1η1
4π

∫ κ1

0

κρ
J0(κρδρ)

κ1z

(
ejκ1z(rz−sz) +R(κρ)e

−jκ1z(rz+sz−2D0)
)
dκρ R0 < rz ≤ D0

(47)

Eq. (47) is a Sommerfeld-type integral [10, Eq. 2.2.30].

This describes the received field as integral superpositions

of cylindrical waves times an upgoing or downgoing plane

wave in the z-direction. Analytical solutions of (47) are

hardly available and problem-specific [10, Ch. 2.7.3].

Hence, we resort to a numerical integration procedure that

accounts for the singularities on the complex κρ-plane.3

Assuming the analyticity of the integrand, we can

invoke Cauchy’s integral theorem and deform the contour

integration path to avoid singularities. The integral value is

unchanged along this new integration path. This should lie

in the fourth orthant due to Re(κρ) ≥ 0 and Sommerfeld

radiation conditions (i.e., Im(κ1z) ≥ 0 and Re(κ1z) ≥ 0)

that ensures convergence of the improper integral in

(47) [10, Ch. 2.2.3].4 We follow [25] and choose a

semi-elliptical integration path C that goes around the pole

singularities with semi-axes of the ellipse chosen as [25]

κmaj
ρ = (κ1 + κ2)/2 κmin

ρ = κmaj
ρ /103 (48)

so that the contour of C is sufficiently away from the

singularity but κρ is small enough for the argument of the

Bessel function in (47) to ensure controlled oscillations.

For complex integration, we parametrize the curve as

κρ(θ) : [π, 2π) → C where κρ(θ) = κ′
ρ(θ) + jκ′′

ρ(θ) with

κ′
ρ(θ) =

κmaj
ρ

2
(1 + cos(θ)) κ′′

ρ(θ) =
κmin
ρ

2
sin(θ), (49)

leading to [24, Ch. 10.5]
∫

C

f(κρ) dκρ =

∫ π

0

f(κρ(θ))

∣∣∣∣
∂κρ(θ)

∂θ

∣∣∣∣ dθ (50)

where f(κρ) is the integrand of (47) and the Jacobian is

∂κρ(θ)

∂θ
=

1

2

(
−κmaj

ρ sin(θ) + jκmin
ρ cos(θ)

)
. (51)

The presented numerical generation procedure performs

superbly as long as the transverse distance ρ is not

too large compared to the wavelength λ. Numerical

simulations show no issue for ρ < 18 m at 60 GHz, i.e.,

δρ/λ < 3600. For larger δρ, the integrand in (47) becomes

a rapidly oscillating function of κρ, due to the large

variations into the Bessel function, and C must be chosen

according to the steepest descent path [10, Ch. 2.7.3].

3The error of a numerical integration routine is proportional to the
derivatives of the integrand and are unbounded near a singularity [24].

4The half-planes Im(κ1z) = 0 and Re(κ1z) = 0 map to the
hyperbola [10, Eq. 2.2.33] in the complex κρ plane; see [10, Fig. 2.2.8].
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