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Abstract—This work aims to introduce the framework of
polynomial optimization theory to solve fractional polynomial
problems (FPPs). Unlike other widely used optimization frame-
works, the proposed one applies to a larger class of FPPs, not
necessarily defined by concave and convex functions. An iterative
algorithm that is provably convergent and enjoys asymptotic
optimality properties is proposed. Numerical results are used to
validate its accuracy in the non-asymptotic regime when applied
to the energy efficiency maximization in multiuser multiple-input
multiple-output communication systems.

I. INTRODUCTION

CONSIDER the fractional polynomial problem (FPP)

r⋆ = max
x∈X

f(x)

g(x)
(1)

with x = [x1, . . . , xn]
T and

X = {x ∈ Rn |hi(x) ≥ 0, i = 1, . . . ,m} (2)

where f(x), g(x), hi(x) : Rn → R are multivariate polyno-
mial functions and X ⊆ Rn is a compact semialgebraic set,
not necessarily convex. Problems of the form in (1) arise in
different areas of signal processing, e.g., energy efficiency
maximization [1], filter design [2], [3], remote sensing [4], and
control theory [5]. More generally, [6] showed that any non-
linear function can be approximated using rational functions,
achieving better accuracy than with a truncated Taylor series.

The standard approach to tackle fractional problems is
fractional programming theory [7]. However, this theory pro-
vides algorithms with limited complexity only if f(x) and
g(x) are concave and convex, respectively, and the constraint
functions {hi(x)} are convex. If any of these assumptions is
not fulfilled, suboptimal methods are needed. One of them is
the alternating optimization method [8], which decomposes
the original problem in subproblems whose solutions can be
computed with affordable complexity. However, this is not
always the case for (1), since f(x), g(x) and {hi(x)} may
not be convex or concave functions even with respect to the
individual variables {xi}. Another possible approach is given
by semidefinite relaxation [9]. This method, however, applies
only to the quadratic case, and is optimal only when at most
two constraints are enforced. Finally, another approach to
tackle non-concave fractional problems is the framework of
sequential fractional programming [10], [11], even though it is
in general suboptimal and its application to the case of general
multivariate polynomial functions is not straightforward.
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Motivated by this background, this work aims at introducing
to the field of signal processing an alternative approach based
on polynomial optimization theory [13], and more specifically
on the so-called sum-of-squares’ (SOSs) reformulation [12].
Combined with the classical fractional programming theory
[7], we show how the polynomial optimization theory can be
used to globally solve (1) as the order of the SOS reformula-
tion grows to infinity. This is achieved without requiring any a
priori assumption on the convexity or concavity of the involved
functions. A few preliminaries on multivariate polynomial
theory in connection with the SOS method is provided in
the Appendix. Due to space limitations, we limit ourselves
to an introductory discussion only. For a more comprehensive
overview on polynomial programming by the SOS method the
reader is referred to [12], [13].

The developed framework is then applied to the maxi-
mization of energy efficiency (EE), defined as the benefit-
cost ratio in terms of amount of information that can be
reliably transferred per unit of time, in multiuser multiple-
input multiple-output (MU-MIMO) communication systems,
over the total consumed power. Particularly, the optimization
is carried out with respect to the number of users and an-
tennas [14], [15]. Numerical results are used to show that
the developed framework closely approximates the optimal
configuration (obtained by exhaustive search) with affordable
complexity.

II. PROPOSED FRAMEWORK

The state-of-the-art approach to solve (1) is the Dinkelbach’s
algorithm [7], which operates as follows.1

Algorithm 1 Dinkelbach’s algorithm
Set k = 0; λk = 0; λk−1 = −1; 0 < ε < 1;
while |λk − λk−1| ≥ ε do

xk = argmax
x∈X

{pk(x) = f(x)− λkg(x)}; (3)

F (λk) = f(xk)− λkg(xk), λk+1 =
f(xk)

g(xk)
;

k = k + 1;
end while

Algorithm 1 converges to the global optimum x⋆ of (1)
with super-linear convergence rate, but each iteration k re-
quires to solve the non-fractional auxiliary problem in (3).
Unfortunately, (3) is in general non-convex in the setting of
(1), which makes the direct implementation of Algorithm 1
computationally unfeasible. The aim of this work is to show

1Without loss of generality, we assume that g(x) > 0. If g(x) < 0, one
can always replace f(x)

g(x)
by f(x)g(x)

g2(x)
, which has a positive denominator.
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how (3) can be globally solved when pk(x) is a generic (non-
convex) polynomial function. We begin by reformulating (3)
into its epigraph form:2

r⋆λ = max
x∈Rn,t∈R

t

subject to hi(x) ≥ 0 i = 1, . . . ,m

h0(x, t) = p(x)− t ≥ 0.

(4)

In order to solve (4), we resort to the SOS reformulation
[13], [27], whose basic idea is to approximate non-negative
polynomials as a sum of squares. Specifically, following [13],
[16], the first step of the method is to embed all constraint
functions in (4) into the single constraint

σ(x) + σ0(x)h0(x, t) +

m∑

i=1

σi(x)hi(x) ≥ 0 (5)

wherein, σ(x) ∈ SOSℓ, σ0(x) ∈ SOSℓ−v, and
σi(x) ∈ SOSℓ−deg(hi), with SOSq denoting the set of
all polynomials of degree q that can be written as a sum of
squares, namely:

SOSq={p(x), deg(p) ≤ q :p(x)=

J∑

j=1

θ2j (x), deg(θj)≤⌈q/2⌉},

whereas v = max{deg(f), deg(g),maxi deg(hi)}, and ℓ > v
is the order of the SOS reformulation. It is interesting to
observe that the representation in (5) can be viewed as a
generalized Lagrangian function [13], [17] associated with
the constrained optimization problem in (4), with the SOS
polynomials σ(·) and {σi(·)}mi=0 playing the role of non-
negative Lagrange multipliers, as in traditional duality theory
[18, Ch. 5].

Next, based on (5), the following SOS reformulation of (4)
is obtained:

r⋆sos,ℓ = max
x∈Rn,t∈R

t

subject to σ(x)+σ0(x)h0(x, t)+

m∑

i=1

σi(x)hi(x)≥0

σi(x) ∈ SOSℓ−deg(hi) i = 1, . . . ,m

σ(x) ∈ SOSℓ, σ0(x) ∈ SOSℓ−v.

(6)

For general polynomials, Problem (6) is still difficult to
solve since its constraint functions might not be concave.
Nevertheless, it can be shown that Problem (6) and its dual
have zero duality gap [13] and that the dual of Problem (6)
can be cast as a semi-definite program (SDP), which therefore
can be solved in polynomial time by using standard semi-
definite programming tools [18]. Moreover, for a sufficiently
large ℓ the solution of Problem (6) is also the global solution
of Problem (4) (and hence of Problem (3), too). Formally,
denote by Md and {pα} the moment matrix3 and the vector
of coordinates in the monomial base of polynomial p(·), by
Md−deg(hi)/2 and {hi,α} the moment matrix and the vector
of coordinates in the monomial base of polynomial hi, for
i = 1, . . . ,M . Then, the following theorem holds.

2The subscript k is omitted hereafter for notational simplicity.
3The definition of moment matrix of a polynomial and of polynomial

expansion over the monomial base are formally introduced in the Appendix.

Theorem 1. [13] The dual of Problem (6) is the SDP

r⋆mom,d = min
y∈Rsn,d

∑

α∈Nn
d

pαyα

subject to Md(y) � 0

Md−⌈deg(hi)/2⌉(hi,αy) � 0

i = 0, . . . ,m , y(0,...,0) = 1 ,

(7)

and for any SOS reformulation order ℓ, strong duality holds,
i.e. r⋆sos,ℓ = r⋆mom,d [13, Theorem 4.2]. Moreover, r⋆sos,ℓ → r⋆λ
when ℓ → ∞.

The final step of the procedure is to recover the optimal
x⋆ ∈ Rn from the global solution of (7), say y⋆ ∈ Rsn,d .
Following [13], [19], if (7) is feasible, then the moment
matrix is guaranteed to have rank one and therefore there
exists one vector v such that Md(y

⋆) = vvT . Finally, the
optimal solution of (3) is found to be equal to x⋆ = z⋆, with
z⋆ = v(2 : n+ 1).

Theorem 1 ensures that we can approach the global solution
of (3) within any desired tolerance, if the SOS reformulation
order ℓ is chosen large enough4. As a consequence, the
proposed implementation of Algorithm 1 in which (3) is
solved in each iteration by solving (7), converges to the global
solution of Problem (1).

The computational complexity of Algorithm 1 depends
on the number of iterations required to converge and the
computational complexity to solve (3). The latter is formulated
as an SDP in (7), which accounts for a total number of m+ 1
LMIs. Each LMI include a system of sn,d single LMIs each
of dimension sn,d × sn,d. Thus, the computational complexity
of solving (7) through, e.g., interior point method, is in the
order of O

(
n2ms3n,d + nms4n,d

)
arithmetic operations [20,

Ch. 11]. Also, since sn,d ≈ nd, the overall complexity grows
polynomially5 with both number of primal variables n and d
(which depends on the order ℓ of the SOS reformulation), and
linearly with the number of polynomial constraints m.

III. APPLICATION: ENERGY EFFICIENCY MAXIMIZATION

The framework developed above is applied next to solve an
EE maximization problem in cellular networks.

A. Problem statement

Inspired by [15], we look for the optimal deployment of a
cellular network for maximal EE while imposing the average
signal-to-interference-plus-noise ratio (SINR) be larger than
a given constraint γ. The optimization variables are the pilot
reuse factor β, the number K of users per cell and the number
M of antennas at each base station. The optimal β is proved
to be such that the SINR constraint is satisfied with equality.

4In practice, we do not need to solve (7) for increasing values of ℓ until
convergence, but it is enough to solve it just once, for a large enough ℓ. The
numerical analysis in Section III shows that ℓ = 12 (i.e., d = 6) leads to
global optimality for the considered problem.

5Although solving (7) seems unpractical for problem of large size, practical
problems exhibit an affordable computational complexity for modest values
of n and d. In addition, most polynomials have only a few nonzero monomial
coefficients and thus sparsity can be leveraged; see [21] and [22].
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EE(K,M) =

(
1− K

τ
B1(K,M)γ
M−B2(K)γ

)
B log2(1 + γ)K

C0 +
(
C1 + U

τ

)
K +D0M +D1KM +

(
1− K

τ
B1(K,M)γ
M−B2(K)γ

)
K
(
U +AB log2(1 + γ)

) (8)

EE(x1, x2) =
f(1,0)x1 + f(2,0)x

2
1 + f(1,1)x1x2 + f(2,1)x

2
1x2 + f(3,0)x

3
1

g(0,0) + g(1,0)x1 + g(0,1)x2 + g(2,0)x
2
1 + g(1,1)x1x2 + g(0,2)x

2
2 + g(2,1)x

2
1x2 + g(1,2)x1x2

2 + g(3,0)x
3
1

(9)

TABLE I: Polynomial coefficients associated with the constraints in (11).

Parameter Value Parameter Value

h1(0,0) −γτ
(
1 + 2

α−2

)
h1(2,0) −γ

(
4

(α−2)2
+ 1

α−1
+ 2

α−2

)

h1(1,0) − γ
SNR

2
α−2

− γτ
(
1 + 2

α−2

) (
1 + 1

SNR

)
h2(0,0)

γ
SNR

(
2

α−2
+ 1 + 1

SNR

)

h1(0,1) τ h2(1,0) γ
(

4
(α−2)2

+ 1
α−1

+ 2
α−2

)
+ γ

(
1 + 2

α−2

) (
1 + 1

SNR

)

h1(1,1) − γ
α−1

h2(0,1) γ
(

1
α−1

− 1
)

This yields β⋆ = B1(K,M)γ
M−B2(K)γ where B1(K,M) and B2(K) are

defined in [15, Eqs. (19)-(20)].6 The optimization over (K,M)
relies on the following problem [15, Eq. (22)]

max
(K,M)∈R2

EE(K,M)

subject to 1 ≤ B1(K,M)γ

M −B2(K)γ
≤ τ

K

(10)

where the objective function EE(K,M) is given in (8) with
known parameters7 U ,A, B, {Ci}, {Di}. In [15] the problem
is tackled by an alternating maximization approach, which is
in general suboptimal. Here, Problem (10) is tackled by the
considered polynomial framework. To elaborate, we define
x = [K,M ]T ∈ R2 and rewrite the optimization problem as
in (1), which yields

max
x

EE(x) =
f(x)

g(x)

subject to hi(x) ≥ 0, i = 1, 2

(11)

where EE(x) is in (9) and h1(x) = h1(0,0) + h1(1,0)x1 +
h1(0,1)x2 + h1(1,1)x1x2 + h1(2,0)x

2
1 and h2(x) = h2(0,0) +

h2(1,0)x1+h2(0,1)x2; the coordinates {h1α}, {h2α} for α ∈ N2
2

are shown in Table I and can be easily derived as done in the
Example 1 given in Appendix. Next, we solve (11) by using
the framework discussed in Section II.

B. Numerical validation

Numerical results are now used to validate the accuracy of
Algorithm 1 when applied with a finite order ℓ of the SOS
reformulation. The hardware coefficients are taken from [15],
while we fix the SINR constraint to γ = 3, the base station
density to λ = 5 BS/km2 and the average signal-to-noise ratio
(SNR) to 0 dB. At each iteration of Algorithm 1, (3) is solved
by using YALMIP [23] with the solver SDPT3 [24]. The
code is available online at https://github.com/lucasanguinetti/

6We neglect the hardware impairments for the sake of simplicity.
7Those depend on a variety of fixed hardware coefficients, whose typical

values strongly depend on the actual hardware equipment and the state-of-
the-art in circuit implementation; details can be found in [15].
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is computed either by means of the iterative Algorithm 1 with
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Fig. 2: Relative error ǫ of Algorithm 1 as a function of the number
of iterations k and for different ℓ-order SOS reformulation in (6)–(7).

EE-Polynomial-Theory for testing different network config-
urations. Fig. 1 shows the EE (measured in Mbit/Joule)
as a function of M and K , obtained with a exhaustive
search. Algorithm 1 converges in less than ten iterations
to the point x⋆

mom = (⌊K⋆
mom⌉, ⌊M⋆

mom⌉) = (8, 133), which
yields an error of ǫ = 1− r⋆mom/r

⋆
λ ≈ 10−4 with respect to

the global optimal x⋆ = (8, 135). This is achieved by using
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d = 6(ℓ = 12). Since n = 2, we have s =
(
6
4

)
= 15. Thus,

the overall complexity in solving (11) is roughly O
(
105

)

arithmetic operations, which with a processing unit operating
at 10 Gflops/s [14] takes 10 µs per iteration. Fig. 2 plots the
relative error as a function of the number of iterations for
d ∈ {2, 4, 6, 8}, which means ℓ ∈ {4, 8, 12, 16}. As it can be
seen, Algorithm 1 is provably convergent even for small d and
within few iterations.

IV. CONCLUSIONS

We proposed a framework for fractional polynomial op-
timization by employing SOS reformulation methods within
Dinkelbach’s iterative algorithm. The proposed approach ap-
plies to a wider set of problems than competing alternatives
and enjoys optimality properties as the order ℓ of the SOS
reformulation grows to infinity. The framework was applied
to the EE maximization of cellular networks, and with d = 6,
(ℓ = 12) was shown to converge in five iterations and exhibits
near-optimal performance when compared to an exhaustive
search algorithm. It should also be observed that the consid-
ered framework could be applied to power control problems
for EE maximization, upon expanding all non-polynomial
functions by Taylor series or leveraging the approximation
method from [6].

APPENDIX

Consider n, v ∈ N, the polynomial p(x) : Rn → R, and
define the sets:

Nn
v = {α ∈ Nn :

n∑

i=1

αi ≤ v}, |Nn
v | =

(
n+ v

v

)
= sn,v.

(12)
Every p(x) with degree v, i.e., deg(p) = v, may be uniquely
written as a finite linear combination of monomials with
maximum degree less than or equal to v [25]

p(x) =
∑

α∈Nn
v

pαx
α with xα = xα1

1 xα2
2 . . . xαn

n ∈ R (13)

with coefficients pα ∈ R for α = [α1, . . . , αn]
T ∈ Nn

v . The
expression in (13) represents the expansion of the polynomial
p(x) over the canonical monomial base, and the vector pα
collects the coordinates of the expansion. While the represen-
tation in (13) applies to any multi-variate polynomial, if p(x)
can be written as an SOS, then it also admits the representation

p(x) = md(x)
TWmd(x), W � 0 (14)

where md(x) = [1, x1, . . . , xn, x
2
1, x1x2, . . . , x

d
n]

T ∈ Rsn,d is
the full monomial basis including all the monomials up to
degree d = ⌈v/2⌉, and W is a positive semidefinite matrix.
By rearranging (14) as tr(md(x)md(x)

TW) and using the
fact that W � 0 we infer that it must hold

md(x)md(x)
T =




1 x1 . . . xn

x1 x2
1 . . . x1xn

...
...

. . .
...

xn x1xn . . . xd
n


 � 0 (15)

in order for p(x) to be positive.

Elaborating further on (15) following [13], [17], we
introduce the so-called moment matrix representation
of (15). Specifically, by a linearization approach,
each entry of the matrix in (15), i.e., xαxβ ∈ R, is
replaced by yα+β ∈ R, for α,β ∈ Nn

d . Denoting by
y = [y00...0, y10...0, . . . , y00...d, . . . , y00...2d]

T ∈ Rsn,d the
collection of the linearized variables, (15) is reformulated as

Md(y) =




y00...0 y10...0 . . . y0...d
y10...0 y20...0 . . . y10...d

...
...

. . .
...

y00...d y10...d . . . y00...2d


 � 0 , (16)

which is by definition the moment matrix of the polynomial
p(x).

SOS reformulation turns out very useful when it is needed to
check the non-negativity of a multivariate function w(x) [12],
which is in general an NP-hard problem [26]. In this context, it
is normally easier to check whether w(x) can be reformulated
as an SOS polynomial, which clearly implies non-negativity.
In the special case of generic v-degree polynomial functions,
for which w(x) = p(x) as in (13), the SOS set is convex and
the feasibility test reduces to solving a semidefinite program
(SDP) [27, Lemma 3.1]. Clearly, although being an SOS
implies non-negativity, the contrary does not usually hold8 and
thus, in general, solving a problem invoking SOS rather than
non-negativity leads to a suboptimal solution. However, by
increasing the degree of the SOS polynomials that are used to
represent p(x), it is possible to approach the optimal solution
within any predefined tolerance (see Theorem 1).

Example 1. In order to grasp the potential of the above
framework, we provide here an easy (unconstrained) problem
as an example. To this end, consider the following:

min
x∈R2

p(x) = (x2 − 2)2 + 2x2
1 + x1x2 + 5 . (17)

The solution to (17) is clearly x⋆ = (x1, x2) = (−1, 2). To
use the framework developed above, we first write down the
set

N1
2 = [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)]T , (18)

and then retrieve {pα} = [9, 0,−4, 2, 1, 2]T from p(x) in (17).
Next, the moment matrix of p(x) is obtained as:

M1(y) =




y0,0 y1,0 y0,1
y1,0 y2,0 y1,1
y0,1 y1,1 y0,2


 . (19)

Then, exploiting the result in Theorem 1, (17) can be refor-
mulated as the dual problem

min
y

9y0,0 − 4y0,1 + 2y2,0 + y1,1 + 2y0,2

subject to M1(y) � 0 ,
(20)

whose solution is found to be y⋆ = (1,−1, 2, ∗, ∗, ∗) from
which we obtain x⋆ = (−1, 2). Thus, zero duality gap is
shown.

8If n = 1, d = 2 or (n, v) = (2, 4), then the two definition coincides [28].
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