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Abstract—This paper examines mutual coupling in holographic
arrays, a novel paradigm where the antenna count and spacings
deviate from traditional designs. With only minor deviations
from the conventional half-wavelength spacing, strong coupling
can accrue as the number of antennas grows large. Properly
harnessed, this can lead to a far-field array gain that, on certain
directions, increases quadratically (rather than linearly) with
that number. Ignored, coupling is bound to manifest itself in
unintended manners, some of which are illustrated and discussed.

I. INTRODUCTION

Although array signal processing often regards antennas
as independent transducers, the reality is they are inherently
coupled by virtue of the exposition to their mutual radiation.
However, coupling can be inhibited if each antenna is in
a null of the coupling function for every other one. For a
uniform linear array (ULA) of omnidirectional antennas, this
materializes with an antenna spacing of d = λ

2 where λ is the
wavelength. This is also the spacing that renders the fading
at the antennas uncorrelated in isotropic scattering, meaning
that the nulls of such fading’s spatial correlation coincide with
those of the coupling function. The classical design for ULAs
is thus to have d = λ

2 , and the far-field directivity or array
gain then equals the number of antennas, N .

Enter holographic arrays, an emerging paradigm in which
d < λ

2 and N is very large [1]. By their very nature, such
arrays are bound to experience mutual coupling. Indeed, it is
well understood how, for d → 0, the coupling surges. What
had not been appreciated thus far is that, if d is fixed at some
arbitrary value below λ

2 , the mutual coupling also surges as N
grows large, in this case owing to the accrual of contributions
from an exploding number of antennas. This paper explores
this phenomenon and it shows that a slight deviation from
d = λ

2 suffices for strong coupling to build up with N .
Coupling can bring about array gains higher than N , a

phenomenon aptly named superdirectivity [2]. For d → 0,
the gain is known to approach N2 [3, 4]. For fixed d < λ

2
and growing N , the gain is herein shown to also scale with
N2, with a scaling factor that depends on d

λ . While the
harnessing of these gains is rife with practical difficulties
[5], ignoring coupling is not a sensible alternative because its
effects will manifest all the same, only in unintended manners.
Recognizing and managing mutual coupling appears altogether
imperative in the holographic realm.

II. DIRECTIVITY OF UNIFORM LINEAR ARRAYS

Consider a ULA comprising N single-polarized omnidirec-
tional antennas with 0 < d ≤ λ

2 . The antennas are driven by
a length-N complex current vector j = (j0, . . . , jN−1)T.
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Fig. 1. Geometry of an ULA aligned with the arbitrary z-axis.

Let θ ∈ [−π2 ,
π
2 ] be the angle relative to the array’s

normal direction (see Fig. 1). The discrete spatial frequency
f = d

λ sin θ is the projection on the array of the propagation
vector, of length 1

λ and direction corresponding to θ, sampled
with interval d. It is the frequency along an asymptotically long
array of the current induced by a plane wave of wavelength
λ arriving on the direction defined by θ or, reciprocally, the
frequency along the array of the current that must be excited
to radiate on this direction at that wavelength. The windowing
effect of an aperture limitation smears each plane wave over
a confined angular range or beam. Only directions associated
with non-overlapping beams are resolvable.

The discrete-space Fourier transform of j, is denoted by
J(f) and given by

J(f) =

N−1∑
n=0

jn e
−j2πfn = aH(f) j (1)

where
a(f) =

(
1, ej2πf , . . . , ej2πf(N−1)

)T

. (2)

This is spatially bandlimited to [− d
λ ,

d
λ ], reflecting a lowpass

filtering effected by the propagation process; this cuts off
the evanescent spectrum, corresponding to spatial frequencies
outside that interval that do not contribute real power [6].

Given d, every f maps to an angle θ. This mapping is invert-
ible in θ ∈ [−π2 ,

π
2 ], with the sign of f disambiguating mirror

directions. Low spatial frequencies correspond to propagation
about the broadside direction (normal to the array) whereas
high spatial frequencies map to the vicinity of the endfire
direction (aligned with the array).

Given some current j, the directivity or array gain on a
certain direction is defined as the ratio of the power spectral
density at the associated f to its average over [− d

λ ,
d
λ ] (the

radiated power), i.e.,

G
(
j, f, dλ

)
=

|J(f)|2
λ
2d

∫ d/λ
−d/λ |J(ξ)|2 dξ

. (3)



As one would expect, averaging (3) over f returns 1.

III. UNCOUPLED ANTENNAS

Setting d = λ
2 results in uncoupled antennas and (3) then

specializes to

G(j, f) = G(j, f, 12 ) =
|J(f)|2∫ 1/2

−1/2 |J(ξ)|2 dξ
. (4)

Momentarily considering a uniform current, whose spectrum
is the N th order Dirichlet kernel

DN (f) = aH(f) 1N =
sin(πN f)

sin(πf)
, (5)

and using
∫ π

2

0
sin2(Nx)
sin2 x

dx = π
2N for positive integer N , it is

found that G(1N , f) = D2
N (f)/N . When N = 1, a unit gain

arises on every direction.
For non-uniform currents, applying Parseval’s theorem to

the denominator of (4) while replacing the spectrum at the
numerator with (1), what emerges is the Rayleigh quotient

G(j, f) =
|aH(f)j|2

‖j‖2
(6)

where a(f) is defined in (2).
In the sequel, the superscript ? distinguishes the optimum

value of any quantity in relation to j. In particular, the
maximum achievable gain at some f is seen to be

G?(f) = max
j 6=0

G(j, f) (7)

= λ0(A(f)) = N (8)

where A(f) = a(f)aH(f) such that tr(A(f)) = N , attained—
up to a factor due to the scaling invariance of (6)—by

j?(f) = a(f). (9)

As expected, in the absence of coupling, the maximum-ratio
transmission is optimum.

IV. IMPACT OF COUPLING

To isolate the effect of mutual coupling, arising from having
d < λ

2 , from the effects of changing the current, G?(f, dλ ) is
henceforth normalized by its counterpart for d = λ

2 into the
superdirectivity factor

S
(
f, dλ
)

=
G?(f, dλ )

G?(f)
(10)

=
G?(f, dλ )

N
. (11)

Setting d = λ
2 returns S(f, 12 ) = 1 ∀f, a uniform factor in the

spatial frequency domain. As seen next, this uniformity breaks
down for d < λ

2 due to the surge in mutual coupling [7].

A. Superdirectivity

Multiplying and dividing (3) by
∫ 1/2

−1/2 |J(ξ)|2 dξ > 0, it
follows that

G
(
j, f, dλ

)
=

G(j, f)

C(j, dλ )
(12)

where G(·) is given by (4) and C(·) is defined by

C(j, dλ ) =

λ
2d

∫ d/λ
−d/λ |J(ξ)|2 dξ∫ 1/2

−1/2 |J(ξ)|2 dξ
. (13)

Focusing on C(j, dλ ), applying Parseval’s theorem to the
numerator while integrating at the denominator, namely∫ d/λ

−d/λ
e−j2πfn df =

sin
(
2π dλn

)
πn

= ωn( dλ ), (14)

what emerges is the Rayleigh quotient

C
(
j, dλ

)
=

jHC( dλ )j

‖j‖2
(15)

where C is a symmetric Toeplitz matrix, positive-definite,

C( dλ ) = λ
2d Ω( dλ ), (16)

with Ω={ωn−m;n,m=0, . . . , N −1} the prolate matrix [8].
Combining (15), (12), and (6), the gain with coupled

antennas emerges as the generalized Rayleigh quotient

G
(
j, f, dλ

)
=

jHA(f)j

jHC( dλ )j
. (17)

Letting λk and vk be the ordered eigenvalues and associated
eigenvectors of the generalized eigenvalue problem

A(f)vk = λkC
(
d
λ

)
vk k = 0, . . . , N − 1, (18)

the maximum of (17) is given by

G?
(
f, dλ
)

= λ0
(
C−1

(
d
λ

)
A(f)

)
, (19)

attained by j? = v0 (which is a function of f and d
λ ). Since

A(f) is of rank-1, λ0 is actually the only positive eigenvalue
and thus

G?
(
f, dλ
)

= a(f)H C−1( dλ )a(f), (20)

attainable, up to a factor, by

j?
(
f, dλ
)

= C−1
(
d
λ

)
a(f). (21)

It follows that the superdirectivity factor in (10) satisfies

S
(
f, dλ
)

=
1

N
a(f)HC−1( dλ )a(f), (22)

which, averaged over f, gives

S
(
d
λ

)
=

λ

2d

∫ d/λ

−d/λ
S
(
f, dλ
)
df (23)

=
1

N
tr

(
C−1

(
d
λ

) λ
2d

∫ d/λ

−d/λ
A(f) df

)
(24)

=
1

N
tr
(
C−1

(
d
λ

)
C
(
d
λ

))
= 1 (25)
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Fig. 2. Superdirectivity S(f, d
λ
) in dB as a function of the spatial frequency

for various antenna spacings. ULA with N = 10 omnidirectional antennas.

where C( dλ ) = λ
2d

∫ d/λ
−d/λA(f) df was used, as derivable from

(2), and (14) was recalled. Thus, coupling merely redistributes
the maximum gain as a function of f. This is exemplified in
Fig. 2 where S(f, dλ ) is plotted as a function of f for N = 10
antennas and various d

λ . As d falls below λ
2 , coupling arises,

redistributing power towards the endfire directions, with the
superdirectivity approaching a value of N as d

λ → 0 [3, 4].

B. Practical Challenges

Denoting by λk(Ω) and uk( dλ ) the ordered eigenvalues and
associated eigenvectors of the prolate matrix Ω, uk( dλ ) equals
the truncation to n = 0, . . . , N − 1 of the discrete prolate
spheroidal sequence of order k, u(k)n ( dλ ) [8]. Furthermore, the
discrete prolate spheroidal wave function Uk(f,W ) is found
as the Fourier transform of uk( dλ ), namely [8, Eq. 26]

Uk(f, dλ ) = εk e
−jπ(N−1)faH(f)uk

(
d
λ

)
(26)

for k = 0, . . . , N−1, with εk being 1 or j according to k being
even or odd, ensuring that (26) is real-valued. The spectra
{Uk(f, dλ )} are symmetric, periodic, orthogonal in [− d

λ ,
d
λ ]

with average energy λk(Ω), and orthonormal in [− 1
2 ,

1
2 ].

While the eigenvectors of Ω are unaltered by the scaling
in (16), the eigenvalues are related to the ones of C by
λk(Ω) = 2d

λ λk(C). Then, replacing C with its eigenvalue
decomposition, (22) morphs into

S
(
f, dλ
)

=
1

N

N−1∑
k=0

1

λk(C)

∣∣aH(f)uk
(
d
λ

)∣∣2 (27)

=
1

N

N−1∑
k=0

1

λk(C)
U2
k

(
f, dλ
)

(28)

where (26) was used. The superdirectivity factor has contribu-
tions from every prolate spheroidal wave function as per their
orthogonality. From (21), in the same vein of (28),

j?
(
f, dλ
)

= ejπ(N−1)f
N−1∑
k=0

Uk
(
f, dλ
)

εkλk(C)
uk
(
d
λ

)
, (29)

where, recall, εk equals 1 or j. Then, from (1),

J?
(
ξ, f, dλ

)
=

N−1∑
k=0

(−1)k

λk(C)
Uk
(
f, dλ
)
Uk
(
ξ, dλ

)
(30)

as a function of the spatial frequency ξ given an f for which
the current is optimized.

Upper and lower bounds on (28) are obtained by equating
a(f)/

√
N to uN−1( dλ ) and u0( dλ ), respectively, whereby

1

λ0(C)
≤ S

(
f, dλ
)
≤ 1

λN−1(C)
(31)

for any f. Thus, large variations in the superdirectivity are
possible when C is ill-conditioned, which in turn occurs when
the coupling is strong. Precisely, high superdirectivities are
achieved on those spatial frequencies for which a(f) contains
a portion of the nullspace of C. The maximum variation
is quantified by the conditioning number λ0(C)/λN−1(C).
However, achieving extreme superdirectivities requires driving
an array with potentially enormous currents as per (21). The
poor conditioning also provides an unstable solution that is
sensitive to small changes in its entries, say in the antenna
excitations and positions [5]. Numerically, this difficulty in
inverting C in (20) maps to the ill-conditioning of (18) due to
A being almost completely null and its null-space intersecting
with the one of C [9].

C. Realizable Superdirectivity

Robustness is gained as the lossless antennas considered
thus far are replaced by their lossy brethren, making superdi-
rectivity accessible in practice [7]. Such losses amount to an
additional term that incorporates the power dissipated as heat,
subsumed in the augmented matrix

C
(
d
λ , η
)

=
(

1
η − 1

)
IN + C

(
d
λ

)
(32)

where 0 < η ≤ 1 is the antenna radiation efficiency and C( dλ )
corresponds to lossless antennas. Through η, the losses act as a
physical regularization, improving the conditioning of C( dλ ).

While the eigenvectors are not altered by this regularization,
the eigenvalues of (32) do change into

λk(C, η) =
(

1
η − 1

)
+ λk(C) (33)

where λk(C) is associated with lossless antennas. Expect-
edly, a trade-off arises between maximum superdirectivity, for
η = 1, and physical realizability, corresponding to η < 1
and a surging dissipated power. Antenna losses raise the
eigenvalue threshold that activates superdirectivity, improving
reliability but taking a toll on the gains. The dependence of
the superdirectivity on η is made explicit by S(f, dλ , η), such
that S(f, dλ , 1) = S(f, dλ ) corresponds to lossless antennas.

V. WIDE APERTURES

As seen, superdirectivity arises when C is of reduced rank,
reflecting a build-up in coupling. For a given number of anten-
nas, N , this occurs with shrinking d

λ [7]. However, coupling
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Fig. 3. Superdirectivity S(f, d
λ
) in dB as a function of the spatial frequency

for various apertures. ULA with omnidirectional antennas spaced by d =
0.45λ and efficiency η = 0.9999.

also strengthens as N grows with fixed d
λ , corresponding to a

widening aperture at the scale of λ.
As N increases, the eigenvalues of C polarize into two

levels, with the transition occurring approximately at [8]

r(C) =
⌊
2 dλN

⌋
≈
⌊
2Lλ
⌋
, (34)

irrespectively of the antenna efficiency. Alternatively, (34) is
obtainable by leveraging the asymptotic equivalence between
Toeplitz matrices and circulant matrices (see App. A) or by
pursuing a signal-space approach, whereby this transition point
can be identified with the number of spatial degrees of freedom
[10]. Indeed, r(C) specifies the number of antennas that are
essentially uncoupled, asymptotically in N . Put differently, the
array with N partially coupled antennas is equivalent, in the
sense of the associated C matrices having the same eigen-
values, to another hypothetical array with r(C) uncoupled
antennas and N − r(C) = N(1 − 2 dλ ) fully coupled ones.
Since fully coupled antennas generate a quadratic endfire gain
[3, 4], it follows that, for fixed d

λ and growing N , the gain is
α( dλ )N2 with α( dλ )→ 1 as d

λ → 0.
This phenomenon is illustrated in Fig. 3 where S(f, dλ , η) is

plotted as a function of f for L = {5, 15, 30}λ and η = 0.9999.
Antennas are spaced by d = 0.45λ, evidencing that coupling
can be strong with d deviating only slightly from λ

2 .

A. Superdirectivity and Superoscillations

From (3), an unbounded array gain appears attainable by a
singularly-integrable power spectral density, the likes of a delta
function δ(ξ − f) for any |f| ≤ 1

2 . Yet approximating such a
spectrum with arbitrary accuracy requires asymptotically many
samples as per the sampling theorem. With a finite number of
samples, N , the power spectral density can only approximate a
delta function. As shown in App. B, for η = 1, the minimum-
power approximation (yielding the highest gain) is given by

|J?
(
ξ, f, dλ

)
|2 = |DN (ξ − f)|2 ΠN (ξ, f, dλ ) (35)
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Fig. 4. Approximation of a delta function at f = 0 over ξ ∈ [−0.3, 0.3] for
various N up to an accuracy of η = 0.9999.

as a function of ξ for any given f. Here,

ΠN (ξ, f, dλ ) =
(
2 dλ
)2
1{
|ξ|≤ dλ

} (36)

reflects the band-limitation, with 1X the indicator function
of a set X . Letting N → ∞, the power density tends
to δ(ξ − f) by virtue of the Dirichlet kernel convergence.
Reintroducing antenna losses increases the power needed for
a given approximation, or decreases the accuracy for the same
power. For instance, the power density |J?(ξ, f, dλ )|2 in (30) is
plotted in Fig. 4 for f = 0, d = 0.3λ, N = {10, 15, 20}, and
η = 0.9999. The oscillatory behavior of the Dirichlet kernel
within the spatial bandwidth is readily apparent. Also, notice
how fashioning current spectra that boost superdirectivity,
subject to a certain radiated power, entails wild behaviors
on the interval of evanescent waves, d

λ < |ξ| < 1
2 , which

do not contribute to that power. These enormous currents
produce high field intensities within the reactive near field
of the array, incurring in power dissipation through antenna
losses. This surge in power can be understood through a
phenomenon called superoscillation [11], which allows for a
length-N current vector to accelerate the rate of change of its
spectrum arbitrarily—to fit the extreme oscillations elicited by
the Dirichlet kernel—provided it does so only locally, within
the spatial bandwidth, and without violating the sampling
theorem on average.

VI. UNINTENDED SUPERDIRECTIVITY

Coupling may arise even for d = λ
2 . This is the case

in planar arrays, where coupling builds up along the north-
east, southeast, southwest, and northwest directions, on which
antennas are spaced at multiples of λ√

2
. It is also the case

in wideband transmissions, when the signal occupies f ∈
[fmin, fmax] (in Hz) and the maximum frequency deviation
∆ = (fmax−fmin)

fmax
is nonnegligible. Then, d

λ varies over the
transmission bandwidth. The implication of this frequency
dependence is showcased in Fig. 5, which depicts the ratio be-
tween the endfire and broadside superdirectivities as a function
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Fig. 5. Ratio between the endfire and broadside superdirectivities (in dB) as
a function of the frequency shift (in percentage) for various apertures. ULA
with antennas spaced by d = λ

2
at fmax, and efficiency η = 0.9999.

of ∆ for various apertures when d = λ
2 at fmax. For 5G NR

operating at fmax+fmin
2 = 28 GHz with fmax−fmin = 400 MHz,

for instance, ∆ = 1.4%; for L = 30λ there is then a 4-
dB shift in gain from broadside to endfire over the signal
bandwidth. This introduces frequency-domain distortion that
adds to whatever frequency selectivity the channel exhibits.
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APPENDIX A

For large N , the unordered eigenvalues of C in (16)
approach the discrete Fourier transform coefficients of {cn} =
{ λ2dωn} with ωn in (14) [12]. Such eigenvalues are thus
obtainable by sampling the associated spectrum λ

2d1{|f|≤d/λ}
in |f| ≤ 1

2 with spacing f = k
N for positive integer k, whereby

λk(C) ≈

{
λ
2d k = 0, 1, . . . , 2 dλN − 1

0 k = 2 dλN, . . . , N − 1
(37)

where the approximation sharpens with N . Then, substituting
(34) while accounting for antenna losses through (33) yields

λk(C, η) ≈

{
( 1
η − 1) + N

r(C) k=0, 1, . . . , r(C)− 1

( 1
η − 1) k=r(C), . . . , N − 1.

(38)

APPENDIX B

The minimum-power signal f(z), spatially bandlimited to
2
λ and passing through f(kd) = fk, k = 0, . . . , N − 1, is [13]

f(z) =

N−1∑
n=0

xn sinc
(
2
λ (z − nd)

)
(39)

with x = (x0, . . . , xN−1)T satisfying

C( dλ )x = f (40)

where C is defined in (16) and f = (f0, . . . , fN−1)T. Setting
d = λ

2 while letting N → ∞, (39) specializes to the sam-
pling theorem whereby the expansion coefficients expectedly
become the Nyquist samples xk = f(k λ2 ) ∀k.

Comparing (40) against (21) unveils f = a(f) in (2) and
that x = j?(f, dλ ) at every f. Then, sampling (39) at z = kd,

ej2πfk =

N−1∑
n=0

j?n
(
f, dλ
)

sinc
(
2 dλ (k − n)

)
(41)

for k = 0, . . . , N−1. Further taking the discrete-space Fourier
transform of both sides of (41) gives, by convolution theorem,

DN (ξ − f)=
λ

2d
1{
|ξ|≤ dλ

}e−jπ(ξ−f)(N−1)aH(ξ)j?
(
f, dλ
)

(42)

=
λ

2d
1{
|ξ|≤ dλ

} e−jπ(ξ−f)(N−1) J?(ξ, f, dλ) (43)

as a function ξ for any given f, where (1) was used. Rearrang-
ing (43) and squaring the resulting expressions yields (35).
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