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Abstract—The improvements in received signal power brought
about by a reflective intelligent surface (RIS) might be over-
stated if background propagation mechanisms such as reflections,
scattering, and diffraction are ignored. This paper addresses
this issue for non-line-of-sight indoor settings, contrasting the
energy conveyed by an RIS with the energy already reaching
the receiver through environmental reflections. And, to prevent
artifacts, such naturally occurring reflections are not modeled
via approximate methods, but rather through a rigorous physics-
based formulation. It is found that the environment contributes
a level of energy commensurate with that of an ideal RIS of
considerable size; to have substantial impact, an actual RIS would
have to generously exceed this size.

I. INTRODUCTION

The possibility of controlling radio propagation environ-

ments is fuelling the interest in reflective intelligent surfaces

(RISs) [1, 2]. In particular, it is envisioned that a RIS can

circumvent the obstruction of the line-of-sight (LOS) path

and make communication possible where it otherwise would

not be. However, most evaluations of the RIS benefits in

this respect, and in the sense of broadly improving coverage,

disregard naturally occurring signal reflections that can play a

similar role. This creates the risk of overstating the advantages

of deploying a RIS. Indeed, it has been shown that, for an

around-the-corner outdoor setting, reflections from building

and street poles contribute as much power as a RIS of

0.3m×0.3m [3], meaning that only a RIS considerable larger

than this would have a substantial impact.

In indoor settings, ambient propagation might be of even

greater importance, yet only seldom it is taken into account

[4, 5]. Motivated by this concern, this paper seeks to reference

the power conveyed by a RIS to the power naturally reaching

a receiver indoors. To prevent artifacts, approximate methods

are avoided and we instead resort to an exact assessment on

a setting that is simple yet representative, in fact the chief

building block of most indoor environments: a room. This

suffices to capture the main indoor propagation mechanism

at high frequencies, which is the reflection on flat surfaces.

Importantly, the LOS path is considered obstructed, as that is

when both ambient propagation and a RIS become relevant.

The paper begins by establishing the power received in

an empty room when transmitter and receiver are randomly

positioned (Fig. 1), then it repeats the exercise with the room

replaced by a RIS (Fig. 2), and finally it draws a relationship

between the two. As a by-product of the formulation, the near-

field impulse response of a RIS-assisted channel is derived and

might be of independent interest. This derivation parallels the
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Fig. 1. Rectangular room with longer dimension W and aspect ratio 1/β,
with exemplary transmitter and receiver locations. The coordinate system is
also shown. Although not made explicit, the LOS path is blocked.
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Fig. 2. RIS of size L ≤ W in free space. Although not made explicit, the
LOS path is blocked.

one in [6], generalizing existing results where the link between

transmitter and RIS and/or the link between RIS and receiver

is in the far field [7, 8].

II. INDOOR AMBIENT PROPAGATION

Transmission is considered at carrier frequency fc, initially

inside a rectangular empty room, the electromagnetic proper-

ties of whose walls are summarized by a complex refractive

index

n =
√
ǫrµr, (1)

where ǫr is the permittivity and µr the permeability, both

relative to free space. The bandwidth is small enough that

http://arxiv.org/abs/2311.05266v1


n can be regarded as constant thereover. A single polarization

is considered, with no environmental depolarization such that

all electromagnetic quantities can be expressed as scalars [9].

A 2D plane corresponding to a horizontal slice of the

room is studied, given the space invariance of (1). The room

boundaries can then be modeled as a rectangle W = ∪4
i=1Wi

where Wi is the ith wall (see Fig. 1). There are no internal

reflections within each wall. The formulation seeks to broadly

encompass any situation in which the room is much larger

than the wavelength, and the interest is in the relative signal

powers conveyed by the environment and the RIS, rather than

their absolute value. The room’s aspect ratio is 1/β ≥ 1, with

W the longer room dimension. As advanced, the LOS path is

taken to be obstructed. For the sake of specificity, the results

are produced for fc = 28 GHz, which is a particularly suitable

frequency for indoor communication, yet these same results

are valid for any other frequency with a properly scaled W .

A. Image Theorem

For an unbounded smooth wall of perfectly conducting ma-

terial, the boundary conditions amount to the image theorem,

which states that the reflection produced by the surface can

be exactly mimicked by a mirror image of the transmitter in

relation to such wall. The image theory readily generalizes

to the intersection of walls by imaging every image in turn,

until the arising images overlap [10, Ch. 7.4]. In the case of

Fig. 1, each step m ≥ 1 of the image-forming process adds

4m images, eventually producing a 2D lattice of images [11].

An mth stage image models the propagation from transmit-

ter to receiver via m successive reflections. Leveraging the

linearity of wave propagation, the channel impulse response

at r = (rx, ry) due to an impulsive current (point source) at

s = (sx, sz) is obtainable by considering each wall separately

and adding all image contributions into

h(r, s) =

∞
∑

m=1

4m
∑

i=1

hm,i(r, s) (2)

with hm,i(r, s) the contribution of the mth order image in

relation to the ith wall. For instance, for the first-order image

in relation to W1,

h1,1(r, s) = −G(r, sx,−sz), (3)

with 0 < sz < βW and −W/2 < sx < W/2; the receiver is

similarly confined. The sign reflects the phase inversion and

G(r, s) =
j

4
H

(1)
0

(

2π

λc
‖r − s‖

)

(4)

is the 2D Green’s function describing a cylindrical wave,

with H
(1)
ν (·) the νth order Hankel function of the first kind,

λc = c/fc the carrier wavelength, and c the speed of light.

Alternatively, (3) can be rewritten as

h1,1(r, s) =

∫∫ ∞

−∞

j1,1(u, s)G(r,u) du (5)

where

j1,1(u, s) = −δ(uz + sz)δ(ux − sx) (6)

is the current density of the image source, for u = (ux, uz).
The delta functions confine this current to the plane at −sz ,

parallel to W1, shifting horizontally in correspondence to sx.

B. Generalized Image Theorem

The image of a source appears as sharp as the original only

under perfect reflection. With walls made of non-perfectly-

conducting materials, the image is blurred by a convolution

with the impulse response of the material [12]. For linear

transverse electric polarization (electric field parallel to the

wall), the image current specializes to the inverse Fourier

transform

R(ux) =
1

2π

∫ ∞

−∞

R(kx) e
jkxux dkx (7)

of the wavenumber spectrum

R(kx) =
µr

√

1−
(

λc

2πkx
)2 −

√

n2 −
(

λc

2πkx
)2

µr

√

1−
(

λc

2πkx
)2

+

√

n2 −
(

λc

2πkx
)2

(8)

where |kx| ≤ 2π/λc once evanescent waves are ruled out. Its

magnitude is less than unity, consistent with conservation of

energy. A perfectly conducting material arises as a special case

of (8) when n → ∞; then, R(kx) = −1 and R(ux) = −δ(ux).
The expression of the first-order image in relation to W1,

given in (6) for a perfect conductor, generalizes to [12, Eq. 23]

j1,1(u, s) = δ(uz + sz)R(ux − sx) (9)

for every u. The channel response for this reflection is then

given by the spatial convolution

h1,1(r, s) =

∫ ∞

−∞

R(ux − sx)G(r, ux,−sz) dux, (10)

which generalizes (3) to arbitrary materials.

Building on this system-theoretical description of the reflec-

tion phenomena, the overall wavenumber response at step m
emerges as the product of the individual responses at steps 1
through m, namely [R(kx)]

m. The conjunction of imperfect

reflectivity by materials of interest and the longer distances

travelled by the signals generated by higher-order images

allows truncating (2) to a finite order M . The channel power

gain is then

|h(r, s)|2 ≈
∣

∣

∣

∣

∣

M
∑

m=1

4m
∑

i=1

hm,i(r, s)

∣

∣

∣

∣

∣

2

. (11)

To gauge the impact of the truncation, Fig. 3 depicts the

cumulative distribution function (CDF), over the locations

of transmitter and receiver, of |h|2. The walls are made of

concrete, whose refractive index is n = 5.31 − j0.3106 at

fc = 28 GHz [13]. Truncation at M = 3 ensures a rather

precise characterization, and even M = 2 is rather satisfactory.



Fig. 3. CDF of |h|2 and |hpower|2 for W = 10 m, β = 1, and M = 1, 2, 3
and 5, with walls made of concrete at fc = 28 GHz. Scaling W would alter
the power gain in inverse proportion.

C. Phase Randomization

Each of the terms being added in (2) has a phase that

depends, besides the refractive index and the angles of in-

cidence onto the walls, on the total path length relative to the

wavelength. The resulting impulse response is highly selective

in space and frequency, which is problematic for two reasons:

• This selectivity is rather sensitive and could be outright

deceptive, as external factors (say thermal expansion)

could alter the path lengths by a nonnegligible share of

the wavelength [5].

• With strong channel coding, the performance is in essence

averaged over the signal bandwidth and, if transmitter

and/or receiver are in motion, further over time [14].

A representation where these two issues are skirted is one

where the addition, rather than over the complex terms as in

(2), is over their powers [15]; this gives an alternative impulse

response hpower satisfying

|hpower(r, s)|2 ≈
M
∑

m=1

4m
∑

i=1

|hm,i(r, s)|2, (12)

where the approximation is again with respect to the truncation

at M . As far as the average power goes, the above can be

interpreted as applying a (uniform) phase randomization to

the terms prior to their combining. The CDF of |hpower(r, s)|2
is also shown in Fig. 3. Both the upper and especially the

lower tails are subdued relative to |h|2, as the destructive and

constructive combinations of terms therein give way to a mere

addition of powers. This confirms that hpower is a good proxy

for the performance with wideband signals.

With a view to a characterization that is as general as

possible, we resort to the extremes represented by h and hpower

to bracket the performance of the indoor benchmark.

III. RIS-AIDED PROPAGATION

Let us now remove the room and introduce a perfectly

conducting RIS in its stead. Again, the LOS path is blocked,

but otherwise the transmission is in free space. Without loss of

generality, the RIS can be aligned with the x-axis (see Fig. 2)

and its size is L ≤ W . Diffraction at the endpoints of the

RIS is disregarded, as its effect is negligible when the RIS is

electrically large.

First, the impulse response of the reflection off a bounded

perfectly conducting surface is derived. Then, the result is

extended to a RIS of the same size and material, making the

impulse response controllable.

A. Perfectly Conducting Bounded Surface

The boundary conditions in Fig. 2 cannot be replicated

through the image theorem, and alternative methods are re-

quired to characterize the reflection. The standard physics ap-

proach to this problem is Huygen’s principle [16, 17], whereby

a field impinging on a surface induces a current thereupon that

acts as a secondary source. This source fictitiously reproduces

the radiation of the actual source by satisfying the same

boundary conditions over the reflecting surface [10, Ch. 7.10].

For instance, the current density induced at every u by a point

source at s is (see App. A)

jL(u, s) =
2

µ0
δ(uz)1[−L

2
,L
2]
(ux)

∂

∂uz
G(u, s) (13)

where µ0 = 4π ·10−7 is the permeability of free space, 1X (·)
is the indicator function of a set X , and

∂

∂uz
G(u, s) =

jπ

2λc

|uz − sz|
‖u− s‖ H

(1)
1

(

2π

λc
‖u− s‖

)

, (14)

which is derivable from (4) by using the chain rule and

invoking ∂
∂zH

(1)
0 (z) = −H

(1)
1 (z) [18, Eq. 1.2.34]. Evaluating

(14) at uz = 0 yields,

∂

∂uz
G(u0, s) =

jπ

2λc

|sz|
‖u0 − s‖H

(1)
1

(

2π

λc
‖u0 − s‖

)

(15)

with u0 = (ux, 0).

The delta function in (13) confines the induced current

density to the plane of the reflecting surface while the indicator

function windows that current to the space occupied by the

surface. In turn,

|sz|
‖u0 − s‖ = cos θi(u0, s) ≥ 0 (16)

is the cosine of θi(u0, s) = ∠(ẑ,u0 − s) ∈ [0, π/2],
shown in Fig. 2 between the surface normal ẑ and the

vector connecting each secondary point source at u0 to the

actual point source at s. This cosine yields one when the

propagation is focused about the z-axis, while it approaches

zero for very shallow angles, corresponding to the relative

projection between transmitter and reflecting surface [19].

Finally, the term 2 ∂
∂uz

G(u0, s) in (13) is directly connected

to the Neumann boundary conditions for a perfect conductor

[20] (see also App. A).



B. Near- and Far-Field Impulse Responses

The response at r elicited from the reflecting surface due

to an impulsive current at s is the spatial convolution

hL(r, s) =

∫∫ ∞

−∞

G(r,u)jL(u, s) du (17)

=
2

µ0

∫ L/2

−L/2

G(r,u0)
∂

∂uz
G(u0, s) dux (18)

where jL(u, s) was replaced by its expression in (13), and the

delta function was removed by integrating over uz . Recalling

(4) and (15), the near-field response emerges as

hL(r, s) = − π

4µ0λc

∫ L/2

−L/2

H
(1)
0

(

2π

λc
‖r − u0‖

)

cos θi(u0, s)

·H(1)
1

(

2π

λc
‖u0 − s‖

)

dux. (19)

For any fixed ux, the channel response is a cascade of

two Hankel’s functions modeling the LOS propagation of

cylindrical waves: the link between the transmitter and every

secondary source on the reflector, and the link between every

secondary source and the receiver. The total response is readily

obtained by superposition.

The far-field response of the channel can be obtained from

(18) for a reflecting surface sufficiently far from transmitter

and receiver. The connection between the two representations,

expounded in App. B, leads to the far-field response

hL(r, s) ≈ Ei(s) cos θi(s)
ej

2π

λc
‖r‖

√

2π‖r‖
(20)

L

λc
sinc

(

L

λc

(

sin θi(s)− sin θr(r)
)

)

where θi(s) = ∠(ẑ, s) and θr(r) = ∠(ẑ, r) are, respectively,

the incident angle between ẑ and s, and the reflected angle

between ẑ and r (see Fig. 2). In turn,

Ei(s) =
λc

2µ0

ej
2π

λc
‖s‖

√

2π‖s‖
(21)

is the amplitude of the incident field, whose power decays

with 2π‖s‖ as per the cylindrical wave expansion.

Asymptotically in the electrical aperture of the reflecting

surface, using lima→∞ a sinc(ax) = δ(x),

lim
L/λc→∞

hL(r, s) = h∞(r, s) (22)

with

h∞(r, s) =
λc

2µ0

ej
2π

λc
‖s‖

√

2π‖s‖
ej

2π

λc
‖r‖

√

2π‖r‖
cos θi(s)δ

(

θi(s)− θr(r)
)

.

(23)

This is nonzero only for θr(r) = θi(s), in agreement with

Snell’s law for an unbounded reflector made of a perfectly con-

ductive material. For finite reflector apertures, (20) accounts

for all the spurious reflections at nonspecular angles.

From (20), the channel power gain for far-field observations

equals

|hL(r, s)|2 ≈ E2
i (s)

2π‖r‖ cos2 θi(s)

(

L

λc

)2

· sinc2
(

L

λc

(

sin θi(s) − sin θr(r)
)

)

, (24)

which equals [7, Eq. 4]. We hasten to emphasize that our

derivation, and the result in (19), do not rely on far-field ap-

proximations for the transmitter-RIS and/or RIS-receiver links.

Also, the derivation would naturally adapt to 3D environments

due to the generality of the Green’s function formulation in

(18): cylindrical waves could be replaced by spherical ones,

whose power decays with 4π‖u‖2 rather than 2π‖u‖.

C. RIS

The currents induced on a regular surface and a RIS are of

a different nature. The former, jL(u), measures the share of

incident field that is reflected by the surface; it is determined

by the transmitter and the material composition, over which no

control is exerted. The latter, jRIS

L (u), is in principle an arbitrary

function (subject, in practice, to realizability constraints).

For a RIS made of passive elements, the performed opera-

tion can be regarded as the pointwise multiplication

jRIS

L (u) = jL(u) e
jϑ(u) (25)

and the ensuing impulse response is obtainable in the same

vein as (19), namely

hL(r, s) =
−π

4µ0λc

∫ L/2

−L/2

H
(1)
0

(

2π

λc
‖r − u0‖

)

cos θi(u0, s)

·H(1)
1

(

2π

λc
‖u0 − s‖

)

ejϑ(ux) dux, (26)

where, recall, u0 = (ux, 0). Here, the phase shifts applied

at every point on the RIS, ϑ(ux), are what renders the

environment controllable from an electromagnetic perspective.

For an N -element RIS, the integral representation of the

impulse response in (26) discretizes into

hL(r, s) = − π

4µ0λc

L

N

N
∑

n=1

H
(1)
0

(

2π

λc
‖r − u0,n‖

)

(27)

· cos θi(u0,n, s)H
(1)
1

(

2π

λc
‖u0,n − s‖

)

ejϑn

where ϑn = ϑ(nL/N) is obtained by sampling ϑ(ux) uni-

formly over the RIS support. A vectorization of (27) yields

hL(r, s) = hsr,L(r)
T
Θhts,L(s) (28)

where Θ = diag(ejϑ1 , . . . , ejϑN ) contains the phase-shift

coefficients and

[hts,L]n(s) = − π

4µ0λc
cos θi(u0,n, s)H

(1)
1

(

2π

λc
‖u0,n − s‖

)

[hsr,L]n(r) =
L

N
H

(1)
0

(

2π

λc
‖r − u0,n‖

)

(29)



Fig. 4. CDF of |h⋆

L
|2 for W = 10 m, β = 1, fc = 28 GHz, parameterized

by L = 0.25, 0.5, 0.75, 1, 1.25 and 1.5 m, with walls made of concrete.
Scaling L and the space on which transmitter and receiver are positioned by
a common factor would not alter the power gain.

are the channel between the transmitter and RIS, and the RIS

and receiver, for every r, s, and n = 1, . . . , N . With proper

channel state information, the composite channels in (28) can

be cophased such that

h⋆
L(r, s) = ‖hsr,L(r)‖ ‖hts,L(s)‖, (30)

which, from the Cauchy-Schwarz inequality, is indeed attain-

able with properly optimized phase shifts {ϑ⋆
n}.

The CDF of |h⋆
L|2 is depicted in Fig. 4, for various RIS

sizes. The lower tail corresponds to locations from which the

RIS is viewed at very shallow angles, performing poorly.

IV. RIS VS AMBIENT PROPAGATION

Armed with the formulation in the preceding two sections,

the power received via a RIS can be gauged against the power

received by virtue of only ambient propagation, in both cases

with the LOS path blocked. The way we choose to articulate

this comparison is by quantifying the RIS size that renders

both powers equal. Recalling the two representations of the

indoor propagation derived in Sec. II, this amounts to the value

of L that makes |h|2 = |h⋆
L|2 or |hpower|2 = |h⋆

L|2. The CDF

of such L, taken over the position of transmitter and receiver,

is presented in Figs. 5–6 for two distinct materials.

Accepting that the RIS may fall short of providing as much

power as the environment in 10% of locations (those with an

overly shallow angle of incidence), for an office of W = 10 m

it is found from Fig. 5 that a RIS of size L ≈ 1 m would be

required. For a larger indoor space, say a mall or an airport

where W = 100 m, Fig. 6 indicates that the required size

swells to L ≈ 3 m. To have a pronounced impact in the face

of ambient propagation, the RIS would have to generously

exceed these respective sizes in each of the environments.

The exact values change with the room’s aspect ratio and

the RIS position, but the qualitative observations are upheld,

and two conclusions are prompted:

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Fig. 5. CDF of the RIS size delivering the same power as the ambient
propagation for W = 10 m and β = 1, with either concrete or plasterboard
materials, at fc = 28 GHz.

• Very considerable RIS sizes are required to really trans-

form the radio conditions within an indoor environment.

At mmWave frequencies, this maps to truly massive

numbers of controllable elements.

• Ignoring ambient propagation is ill-advised, and RIS

performance evaluations not accounting for it should be

regarded with suspicion.

The characterization of the ambient propagation underpin-

ning these conclusions is certainly based on the premises of

smooth walls and of a room devoid of objects. In realistic

situations, power may be scattered [21], lessening the amount

that reaches the receiver. At the same time, the cophasing

effected by the RIS is sure to be imperfect when based

on channel estimates rather than the true channel, and with

necessarily coarse phase shift resolution. Furthermore, the RIS

is sure to be unable to reflect all of its impinging power.

For any reasonable balance between these various effects, the

above conclusions should not be compromised, and may even

be reinforced.
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APPENDIX A

The electromagnetic physical equivalent [10, Ch. 7.10] is

specialized next to linearly polarized transverse electric fields,

which are amenable to a scalar description [18, Ch. 2].

A. Boundary Conditions for Transverse Electric Polarization

The wave equation driven by a current density j(u),
u = (ux, uz), in an isotropic medium of space-dependent

permeability µ(u) and permittivity ǫ(u) is [18]

∇ ·
1

µ(u)
∇e(u) +

(

2πc

λc

)2

ǫ(u)e(u) = j
2πc

λc
j(u). (31)
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Fig. 6. CDF of the RIS size delivering the same power as the ambient
propagation for W = 100 m and β = 1, with either concrete or plasterboard
materials, at fc = 28 GHz.

When ǫ(·) and µ(·) vary along one direction only, e.g., the

z direction, the coordinate system can be rotated such the

variation is along z and (31) becomes

1

µ(uz)

∂2

∂u2
x

e(u) +
∂

∂uz

(

1

µ(uz)

∂

∂uz
e(u)

)

+

(

2πc

λc

)2

ǫ(uz)e(u) = j
2πc

λc
j(u). (32)

An interface at u0z ≥ 0 divides the medium into a lower

region uz > u0z (free-space) and an upper region uz < u0z

(material); see Fig. 2. The electromagnetic properties are con-

stant in each of the two ensuing regions, respectively specified

by (ǫ0, µ0) and (ǫ0ǫr, µ0µr), with ǫr and µr as in (1). Following

[22], we integrate (32) over a small rectangle centered on

u0 = (u0x, u0z), of height ∆z and length ∆x ≪ ∆z , such

that the field is essentially constant along x,

∆x
1

µ(u0z +∆z)

∂

∂uz
e(u0x, u0z +∆z)

−∆x
1

µ(u0z −∆z)

∂

∂uz
e(u0x, u0z −∆z)

+

(

2πc

λc

)2

∆x

∫ u0z+∆z

u0z−∆z

duzǫ(uz)e(u0x, uz) (33)

= j
2πc

λc
∆x

∫ u0z+∆z

u0z−∆z

duzj(u0x, uz).

Assume the continuity of the field along z such that its partial

derivative is suitably defined. From (33), letting ∆z → 0,

1

µ0

∂

∂uz
e1(u0)−

1

µ0µr

∂

∂uz
e2(u0) = j(u0) (34)

e2(u0) = e1(u0), (35)

where lim∆z→0

∫ u0z+∆z

u0z−∆z

duzj(u0x, uz) = j(u0) for every

point u0 on the interface. Provided there is no singular

behavior across the surface, j(u0) = 0 and (34) and (35)

coincide with the source-free conditions in [18, Eq. 2.1.9a].

For a dielectric material, µr = 1, implying the continuity of

the field and its normal derivative across the interface. For a

single impinging plane wave, (34) and (35) lead to (8) [18].

B. Physical Equivalent

A perfectly conducting material may be regarded as an

idealization where the fields inside are vanishingly small, i.e.,

e2(u) = 0 [10, 22]. A current is present along a very thin

layer on the surface, namely,

j(u) = j(u0)δ(uz − u0z), (36)

where j(u0) is determined by the discontinuity in the normal

derivative of the field across the interface as per (34),

j(u0) =
1

µ0

∂

∂uz
e1(u0). (37)

This agrees with the uniqueness theorem applied to a volume

sandwiched between the surface at u0z and another surface

at u1z , u1z > u0z. As u1z → ∞, the field over the plane

at u1z vanishes as per radiation conditions [18] and only

the contribution at u0z matters. In turn, the field inside such

volume is expressible in terms of either the field on the surface

e1(u0) or its normal derivative ∂
∂uz

e1(u0), for every u0x.

When only the latter term is retained, the solution is said to

satisfy the Neumann boundary condition [18].

Now, e1(u) = ei(u) + er(u) in region 1, where ei(u) and

er(u) are incident and reflected fields [10]. Thus, from (37),

j(u0) =
1

µ0

∂

∂uz

(

ei(u0) + er(u0)
)

, (38)

which, for a perfect conductor, simplifies as

j(u0) =
2

µ0

∂

∂uz
ei(u0). (39)

For instance, consider a downgoing incident plane wave

ei(uz) = e−j 2π
λc

uz impinging orthogonally on a far-field

surface at u0z . The upgoing reflected plane wave is given

by er(uz) = −ej
2π

λc
(uz−2u0z). Their sum yields zero at the

interface, as per e2(u) = 0, while the sum of the plane-wave

derivatives yields double each derivate’s value at the interface.

In the near field of the reflecting surface, the plane waves need

to be replaced with Green’s functions [20, Eq. 3.6].

Plugging (39) into (36) yields the expression for the induced

surface current density

j(u) =
2

µ0
δ(uz − u0z)

∂

∂uz
ei(u). (40)

Finally, j(u) exists only over the portion of the interface that

is actually occupied by the material,

jL(u) =
2

µ0
δ(uz − u0z)1[−L

2
,L
2]
(ux)

∂

∂uz
ei(u). (41)

A similar physical consideration is commonly used in optics

to evaluate the field passing through an aperture, the so-called

Kirchoff approximation [23, Ch. 3]. Eq. (13) follows from

(41) by replacing ei(u) with the Green’s function G(u, s) and

evaluating the resulting expression at u0z = 0 as per Fig. 2.



APPENDIX B

The asymptotic expansion for the Hankel function reads [10]

H(1)
ν (z) ∼

√

2

πz
ej(z−ν π

2
−π

4
) (42)

for every ν and large z values. Using (42) into (4) and (14),

G(r,u0) ∼
√

j

8π

√

λc

2π

ej
2π

λc
‖r−u0‖

‖r − u0‖1/2
(43)

∂

∂uz
G(u0, s) ∼

√

−j

8π

√

2π

λc

ej
2π

λc
‖s−u0‖

‖s− u0‖1/2
cos θi(u0, s). (44)

Now, invoke the approximations for far-zone observations [10]

‖r − u0‖ ≈
{

‖r‖+ ux sin θr(r) phase

‖r‖ amplitude
(45)

‖s− u0‖ ≈
{

‖s‖ − ux sin θi(s) phase

‖s‖ amplitude,
(46)

where θi(s) = ∠(ẑ, s) and θr(r) = ∠(ẑ, r) are the incident

angle and reflected angle corresponding to the reference point

(0, 0) on the reflecting surface (see Fig. 2). These expressions

can be used to convert (43) and (44) into the plane waves

G(r,u0) ∼
√

j

8π

√

λc

2π

ej
2π

λc
‖r‖

‖r‖1/2 e
j 2π
λc

ux sin θr(r) (47)

∂

∂uz
G(u0, s) ∼

√

−j

8π

√

2π

λc

ej
2π

λc
‖s‖

‖s‖1/2 e
−j 2π

λc
ux sin θi(s) cos θi(s).

(48)

Substituting (47) and (48) into (18) yields the far-field

channel response reported in (20), which follows from
∫ a/2

−a/2 e
−jβx dx =

(

a
2

)−1
sin

(

aβ
2

)

.
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